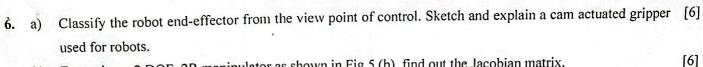
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIVERSITY OF BARISAL Final Examination 2023

Course Title: Robotics and Automation


Course Code: CSE-4101

4th year 1st Semester

Session: 2022-23 (Admission: 2019-20)

Marks: 60 Time: 3 hour

Answer any five Questions from the followings.			
- 1.	∕a)	Define software robots with examples.	[2]
	b)	Explain at least 5 different types of robots mentioning their construction, deployment and applications.	[10]
2.		Elaborate the concept of coordinate frames. How it helps to describe the location and motion of a robot. Use appropriate figures, equations and matrices to explain.	[12]
. 3.	a)	How robot rotates. Explain different types of rotations using appropriate examples.	[9]
	b)	Write an algorithm for composite rotation.	[3]
4.	a)	What do you understand by homogeneous coordinates. How homogeneous transformation matrix is used to change coordinate frame in robotics?	[5]
	L .\	Elaborate your concept on inverse homogeneous transformation.	[3]
	b) c)	Explain degrees of freedom of a robot using appropriate figures.	[4]
5.	a) b)	Explain robot architecture considering five common body and arm configurations. How a robot can locate itself and navigate through an environment? What are the types of non-verbal	[5] [7]
		interaction? Briefly explain each of them.	and the second
Trape			

For a planar 2 DOF, 2R manipulator as shown in Fig.5 (b), find out the Jacobian matrix.

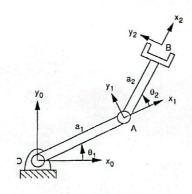


Fig. 5 (b)

Discuss on joint and link parameters in robotics point of view.

[4]

Define direct Kinematics and its problem.

[2]

Write DH algorithm for assignment of Coordinate frames (use suitable figures). c)

[6]

Describe with a suitable diagram how a non-servo control robot system works. 8.

[4]

Fig. 8 (b) shows two matrices. b)

$$\mathbf{H}_{1} = \begin{bmatrix} \cos \theta & \sin \theta & 0 & a \\ -\sin \theta & \cos \theta & 0 & b \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{H}_{2} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & c \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{H}_2 = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & c \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Fig. 8 (b)

Describe what is happening to an object undergoing $H = H_1H_2$. Be very specific and include any applicable reference frames. Draw the initial body frame, any intermediate frames and the final body frame.