

Department of Computer Science and Engineering University of Barishal

Final Examination

3rd Year 2nd Semester, Session: 2020-21

Course Code: CSE-3203
Total time: 3.00 hours

Course Title: Theory of Computation

Total marks: 60.0

(Note: Answer any five set of questions from the followings)

i.	a) b)	Define a Turing Machine and explain a pushdown automaton. Show that any language recognized by a multitape Turing machine is recursively enumerable.	1+3 6
	c)	What do you know about context-free grammar's?	2
2/	a)	Provide definitions and examples for the following terms: i) Alphabet, ii) String, and iii) language	2+2+2
	b)	Give a regular expression for the following language B over the alphabet $\{a, b\}$. $B = \{w \mid w \text{ does not contain the substring aaa}\}.$	4
	c)	Under what circumstances is an expression referred to as a regular expression?	2
3.	(a)	Use the pumping lemma to prove that the language $A = \{ 0^{2n} 1^{3n} 0^n n \ge 0 \}$ is not context free.	5
	b)	Convert the following NFA to DFA.	4
X.		a b a a b	

Height

c) State the Pumping Lemma for regular languages.

3

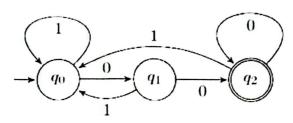
J.

a) Summarize the principal closure properties for regular languages.

,

b) Convert DFA's to regular expressions by eliminating states.

Λ


Prove that if L is a regular language over alphabet Σ , then $\overline{L} = \Sigma * - L$ is also a regular language.

4

AVAII ABLE A

Construct a context-free grammar for the following DFA:

5

b) Show that the grammar ($\{S\}, \{a, b\}, R, S$) with rules $R = S \rightarrow aS \mid aSbS \mid E$ is ambiguous.

4

Explain inverse homomorphism. c)

3

Explain in detail the three types of operations on languages that are represented by 6. regular expression operations.

4

5

b) Prove that if we add a finite set of strings to a regular language, the result is a regular language.

3

Write the closure properties of regular languages.

2+2

7. a) Prove that the following are not regular languages:

- (i) The set of strings of 0's and 1's beginning with 1, such that when interpreted as an integer, that integer is a prime.
- (ii) The set of strings of the form 0 il j such that the greatest common divisor of i and j is 1.

4

State the properties of a parse tree. Construct a parse tree for the following string: $S \rightarrow SS + |SS*|a$

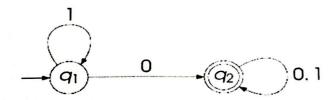
4

Prove that every language defined by a regular expression is also defined by a finite automaton.

4

State formal definition of the finite automata. Give an example.

2+2


Consider the regular expression (a(cd)*b) * . b)

(i) Find a string over {a, b, c, d}⁴ which matches the expression.

(ii) Find a string over {a, b, c, d}⁴ which does not match the expression.

4

Transform the following NFA to the ∈-NFA:

..... END