

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING UNIVERSITY OF BARISHAL

FINAL EXAMINATION
Course Title: Numerical Methods

Course Code: CSE-3107 3rd Year 1st Semester Session: 2020-21

(Answer Any Five Questions)

Marks: 60

dotas

[6]

[8]

[6]

Time: 3 Hours

- a) Discuss the significance of studying numerical methods and outline the advantages and [6] disadvantages of finding root(s) of equations using iterative methods.
 - b) Find a real root of the equation $x^3 2x^2 4 = 0$ by using Bisection Method and False [6] position methods with code with initial values 2 and 3.
- 2 a) Show that the nth difference of nth degree polynomial is constant. [4]
 - b) What do you mean by operator? Establish the relation between the following various operators [4]
 - i. $\Delta \nabla \equiv \Delta \nabla$
 - ii. $(1 + \Delta)(1 \nabla) \equiv 1$
 - c) Show that the second forward difference of the quadratic polynomial $f(x) = ax^2 + bx + [4]$ c is constant.
- 3 a) Consider the following table, which contains the data on the number of students [6].

 (approx.) applying from 2012 to 2019. Additionally, the value for 2016 is also missing.

 Now your task is to find the approximate value for the year.

X	2012	2012	DOMESTICAL DESIGNATION OF THE PERSON OF THE		- 11-	
fr.	2012	2013	2014	2014 2015 2016	2012	
I(X)	17.1	13	14	0.6	2010	2017
			144	9.0		12.4

- x 10 15 20 25 30 35 f(x) 43 ---- 29 32 ---- 77
 - b) For the following table, find the value of f(29) along with the name of interpolation [4] formula with justification.

Briefly describe Newton-Gregory's formula for forward and backward interpolation with equal

X	20	22	24			
f(x)	165	166	24	26	28	30
100	100	100	168	169	170	171

- 5 a) Derive Lagrange's Interpolation formula for unequal intervals.
 - b) Find the cubic polynomial which takes the following values [6] y(0) = 1, y(1) = 3, y(3) = 31, y(6) = 223, and y(10) = 1011 then find y(2.5) using Lagrange's interpolation formula.

- Derive the general quadrature formula for numerical integration of ∫_a f(x)dx using the Newton's forward interpolation formula.
 Deduce the General Quadrature formula for the form
- b) Deduce the General Quadrature formula for the numerical integration using equidistance ordinates and hence establish Simpson's 1/3 and 3/4 rule. [6]
- a) Solve the system of linear equations by matrix inversion method [6] $3X + Y + 2Z = 3, \qquad 2X 3V 7 = 3, \qquad V + 2V + 7$
- Solve the following system of linear equations by Gauss-Jordan method $X Y + 6Z = 41, \qquad 3X + 2Y Z = 20, \qquad 2X + 3Y 3Z = 7$ [6]
- 3 a) Find the first, second, and third derivatives of the function tabulated below, at the point [6] x=1.0

	4.0	3.5	3.0	2.5	2.0	1.5	X
10	59.000	38.875	24.000	1.625	7.000	3.375	У

- Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ by using Simpson's $\frac{1}{3}$ rule and simpson $\frac{1}{3}$ rule. For $\frac{1}{3}$, $\frac{1}{3}$,
 - 3. (-3.42) +1 (-1-2)+2 (9+3)