

University of Barisal

Department of Computer Sciences & Engineering

2nd Year 2nd Semester Final Examinations-2024, Session: 2022-23

Course Code: MATH-2211, Course Title: Vectors, Fourier analysis, and Laplace transforms
Full Marks: 60

Time: 3 Hours

Answer any **five (05)** from the following questions. Right side of the question shows the maximum marks.

1.(a) Find the cross product of the vectors $(1, 2, 3)$ and $(3, -4, 2)$ and also find the sin angle between them. 4

(b) Find the angle which the vector $3\mathbf{i} - 6\mathbf{j} + 2\mathbf{k}$ makes with the coordinate axis. 4

(c) Find the volume of the parallelepiped whose edges are represented by the $\mathbf{a} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$, $\mathbf{b} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $\mathbf{c} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$. $a \cdot b \times c$ 6

2.(a) If $\mathbf{u} = x^2 z\mathbf{i} + yz^2 \mathbf{j} - xy\mathbf{k}$ and $\mathbf{v} = xy^2 \mathbf{i} - yz\mathbf{j} + zx\mathbf{k}$ then find (i) $(\nabla \cdot \mathbf{u})\mathbf{v}$, (ii) $(\nabla \times \mathbf{u}) \times \mathbf{v}$, (iii) $\mathbf{v} \cdot \nabla \times \mathbf{u}$. 6

(b) Prove that: $\text{curl}(\mathbf{r} \times \mathbf{s}) = \mathbf{r} \text{ div } \mathbf{s} - \mathbf{s} \text{ div } \mathbf{r} + \mathbf{s} \cdot \nabla \mathbf{r} - \mathbf{r} \cdot \nabla \mathbf{s}$. 6

3.(a) If $\overline{\mathbf{F}} = x^3 z\hat{\mathbf{i}} - 2xy^2 \hat{\mathbf{j}} + 2yz^3 \hat{\mathbf{k}}$ then find the gradient, divergence and curl of \mathbf{F} . 6

(b) Find the line integral $\oint y^2 dx - x^2 dy$ about the circle $x^2 + (y - 1)^2 = 1$. If $x = \cos t$, then $y = 1 + \sin t$ which represent the circle. 6

4.(a) State and prove the Green's theorem for vector calculus. 6

(b) Verify Green's theorem in the plane for $\oint (2x - y^3) dx - xy dy$ where C is the boundary of the region enclosed by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 9$. 6

5.(a) Define Fourier series. Expand $f(x) = \sin x$, $0 < x < \pi$ in a Fourier cosine series. 6

(b) Define half range Fourier sine and cosine series. Show that, an even function can have no sine terms in its Fourier expansion. 6

6.(a) State and proved the Parseval's Identity for Fourier expansion. 6

(b) Expand $f(x) = x$, $0 < x < 2$, in a half-range Fourier cosine series. Also, write down the Parseval's Identity corresponding for the Fourier expansion. 6

7.(a) Find the Laplace transforms of the following functions: 6

(i) $F(t) = t \sin at$ (ii) $F(t) = t \cos at$.

(b) If $\mathcal{L}\{F(t)\} = f(s)$ then prove that $\mathcal{L}\{t^n F(t)\} = (-1)^n \frac{d^n}{ds^n} f(s) = (-1)^n f^{(n)}(s)$ 6
where $n = 1, 2, 3, \dots$

8.(a) Define inverse Laplace transformation. Prove that: (i) $\mathcal{L}^{-1}\left\{\frac{1}{s^{n+1}}\right\} = \frac{t^n}{\Gamma(n+1)}$; $n > 1$ 6

(ii) $\mathcal{L}^{-1}\left\{\frac{1}{(s-a)^2 + b^2}\right\} = \frac{1}{b} e^{at} \sin bt$.

(b) If $\mathcal{L}\{F(t)\} = f(s)$ then prove that: (i) $\mathcal{L}\{F(at)\} = \frac{1}{a} f\left(\frac{s}{a}\right)$ 6
(ii) $\mathcal{L}\{F'(t)\} = sf(s) - F(0)$.