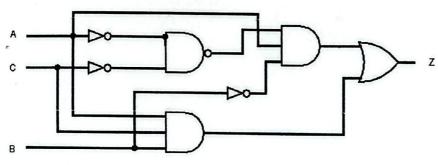
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIVERSITY OF BARISAL

B.Sc. Final Examination

Course Title: Digital Logic Design

Course Code: CSE-2103 2nd Year 1st Semester


Session: 2023-24 (Admission Session 2022-23)

Time: 3 hours

Marks: 60

Answer any five Questions from the followings.

- Design a logic circuit with inputs P, Q, R so that output S is HIGH whenever P is '0' or whenever Q=R=1.
 - b) Simply the logic circuit shown below: [3]

- c) Use k-map simplification process to design a Full Adder. What is the limitation of a full adder? [6]
- 2 a) Explain how a S-R FlipFlop store a bit. [3]
 - b) What is the limitation of S-R FlipFlop? Explain how the limitation can be resolved. [4]
 - O) Define Race Around condition in J-K FlipFlop. How can you overcome the problem? Explain [5] with an appropriate figure and waveforms.
- 3. a) What is the limitation of a parallel adder? Using 74LS83 ICs, draw a 12 bit parallel Adder. [3]
 - b) Explain how 2's complement system can facilitate arithmetic operations in digital computing. [3]
 - c) Design and explain the working principal of a parallel adder/subtractor using 2's-complement [6] system.
- 4. a) Define a decade ripple counter. Design and explain the working principle of a Mod-11 decade [6] ripple counter with its state transition diagram.
 - b) Explain the working principle of a presettable counter. [6]
- 5. a) Explain the working principle of a Synchronous up/down MOD-16 counter with an appropriate [7]
 - (b) Use two 74293 ICs to design a mod 50 counter. [5]

15/07/2025 14:13

6	. a)	Write short notes on the followings:	[4]
		I) Fan-Out	
		II) Noise Immunity	
		III) Propagation delay	
		Characteristics of TTL logic gate.	
	b)	Design and explain the working principle of a TTL NOR gate.	[4]
	c)	Draw the circuit diagram of a CMOS NAND gate.	[2]
	d)	A certain TTL IC output is rated at $I_{OH}(max) = 800 \mu A$ and $I_{OL} = 48 mA$. Express the IC's fan-	[2]
		out in terms of unit loads. [consider $1UL = 40 \mu A$ in the HIGH state and 1.6 mA in the LOW	
		state]	
7.	a)	Draw the logic diagram of a 74LS138 decoder IC. Also explain its working principle.	[5]
	b)	Use 74LS138 ICs to design a 1 of 24 decoder.	[4]
	c)	How Liquid Crystal Display (LCD) works?	[3]
		· ·	
8.	a)	Use 74LS138 ICs to design a 1 of 32 decoder.	[4]
	b)	What is Multiplexer? Design an 8-input MUX and explain its operation.	[4]
	c)	How can you use a 74138 IC as a DEMUX.	[2]
	d)	Draw the logic diagram for the 7442 IC.	[2]