

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
UNIVERSITY OF BARISHAL

FINAL EXAMINATION-2022
Course Title: Machine Learning
Course Code: CSE-4213
4th Year 2nd Semester
Session: 2018-19

Time: 3 hours

Marks: 60

Answer any five Questions from the following.

1.
 - a) Define machine learning. How is it different from traditional programming? [4]
 - b) What are the factors affecting the performance of machine learning algorithm? [4]
 - c) Explain semi supervised and reinforcement learning? [4]
2.
 - a) Explain the difference between classification and regression in machine learning with example. [3]
 - b) Why data preprocessing is important in machine learning? Describe three popular data preprocessing techniques in machine learning. [3]
 - c) You are evaluating the performance of a machine learning model on a classification problem. You are given the following data: [6]

Instance	True Label	Predicted Label
1	A	A
2	B	A
3	A	B
4	B	B
5	A	A
6	B	B
7	A	B
8	B	A

Calculate the following performance metrics for the classification problem:

- I. Accuracy
 - II. Precision
 - III. Recall
 - IV. F1 Score
3. a) Given the dataset for a classification task, use the k Nearest Neighbor (kNN) algorithm with k=3 to classify the data object with features (t₁=1, t₂=2, t₃=3, t₄=4, t₅=4). Apply Euclidean distance as the distance metric. [6]

t ₁	t ₂	t ₃	t ₄	t ₅	Class
2	3	4	5	5	Buy
0	1	2	3	5	Buy
2	2	2	2	4	Sell
3	3	3	3	3	Sell
4	2	4	4	4	Sell

- b) Distinguish between classification and Clustering. List the applications of clustering and identify advantages and disadvantages of clustering algorithm. [3]
- c) Estimate the problems associated with clustering large data. [3]

4. a. You are given a dataset containing information about customer purchases at a retail store. Each [8] customer is represented by two features: the amount spent on electronics and the amount spent on clothing. The dataset is as follows:

Customer	Electronics	Clothing
1	200	50
2	150	60
3	300	200
4	250	180
5	120	30
6	350	300
7	400	250
8	180	70

Now, group these customers into $k=2$ clusters. You can use K-means clustering algorithm.

- b) Explain the primary difference between K-means clustering and Principal Component Analysis [4] (PCA) in the context of unsupervised learning. Provide one application where each method is typically used.
5. (a) Define overfitting and underfitting in machine learning. Provide a visual explanation for each [3] case using a polynomial regression model.
- (b) A model achieves 95% accuracy on training data but only 60% on test data. Is this an example [3] of overfitting or underfitting? Justify your answer.
- (c) Imagine we have a dataset where we classify emails as "Spam" or "Not Spam" based on [6] whether they contain specific words.

Email	Word1	Word2	Class
1	Yes	No	Spam
2	Yes	Yes	Not Spam
3	No	Yes	Spam
4	No	No	Not Spam

Now, classify a new email that contains "Word1" but not "Word2" by using Naïve Bayesian classification.

6. (a) Compare and contrast decision trees, random forests, and support vector machines as [4] classification algorithms.
- (b) Explain the concept of the kernel trick in SVM. How does the kernel trick allow SVMs to [4] perform classification in non-linearly separable data spaces? Provide examples of common kernel functions used in SVMs.
- (c) Write down the mathematical formulation of the SVM optimization problem for a binary [4] classification task. Describe the objective function and the constraints involved.
7. (a) What are ensemble methods in machine learning? Explain the difference between bagging and [4] boosting with examples.
- (b) Describe how the Random Forest algorithm works as an ensemble method. How does it improve [4] upon individual decision trees?
- (c) You are given the predictions from three models on a binary classification task. [4]

Model 1 predicts: [0, 1, 0, 1],
 Model 2 predicts: [0, 1, 1, 1],
 Model 3 predicts: [1, 1, 0, 0].

Using majority voting, compute the final ensemble prediction for each case.

8. You are provided with a dataset containing information about loan applications. Each application has the following features: [12]

Application	Credit Score	Employment Status	Income	Loan Approved
1	High	Employed	High	Yes
2	Medium	Employed	Medium	Yes
3	Low	Unemployed	Low	No
4	High	Employed	Medium	Yes
5	Medium	Unemployed	High	No
6	Low	Employed	Low	No
7	High	Unemployed	High	Yes
8	Medium	Employed	High	Yes
9	Low	Unemployed	Medium	No
10	High	Employed	Low	No

Now solve the following problem:

- I. Calculate the Entropy for the entire dataset.
- II. Calculate the Information Gain for each feature (Credit Score, Employment Status, and Income).
- III. Calculate the Gini Index for each feature (Credit Score, Employment Status, and Income)

Good Luck!!!