University of Barishal

Department of Computer Science and Engineering 1st Year, 2nd Semester, Final Examination, 2023,

Session 2022-2023, Course code: Math 1209

Course Title: Integral Calculus, Ordinary and Partial Differential Equations and Series Solutions
Full Marks: 60
Time:03 Hours

N.B: Answer any Five (05) questions out of the following.

. /				
1	a)	Demonstrate the differences between differential and Integral Calculus using an example.	3	
	b)	Solve the following integral problems.	3+3	
		i) $\int \frac{x^3 + 5x^2 - 4}{x^2} dx$	+3	
		$ii) \int 3x^2 \sqrt{x^3 + 1} dx$		
	c	ii) $\int 4x\cos(2-3x) dx$		
2	a)	Solve the following integral problem:	3	
		$\int \frac{2x+1}{\sqrt{4x-1}} \ dx$		
	b)	You are given the following differential equation. Solve the differential	5	
		equation to find the original equation: $\frac{dy}{dx} + \frac{(y\cos x + \sin y + y)}{\sin x + x\cos y + x} = 0$		
	c)	Solve the following definite integral problem. $\frac{\pi}{2}$	4	
		$\int_{0}^{\frac{2}{s}} x^{2} \sin x dx$		
3/	a)	Solve the following finite integral problem.	3	
		$\int_{-1}^{2} (4x^5 - 6x - 5) dx$		
	b)	Calculate the area bounded between the x-axis and the parabola $y = 4x - x^2$	4	
	c)	Calculate the area bounded between the parabola $y^2 = 4x$ and the line $y = 2x - 4$.	5	
	a)	Given the following differential equation, solve for the original equation:	4	
		$(x+1)\frac{dy}{dx} - y = e^{3x}(x+1)^2$		
	b)	Determine the volume of the solid by rotating the region bounded by	4	
		$y = x^2 - 4x + 5$, $x = 1$ and $x = 4$. x-axis will be considered the rotation axis.		
	c)	Determine the volume of the solid rotating the region bounded by $y = \sqrt[3]{x}$ and $y = \frac{x}{4}$. The y-axis will be considered the rotation axis.	4	

	The second services			
	5	a)	Find the generic formulation to solve $\int \sin^n dx$ where n is an even integer	6
			number. Using the formulation solve for $\int sin^4 dx$.	
		b)	Find the order and degree of the following differential equation. Explain your findings.	2
			$y = x(\frac{dy}{dx}) + a\{1 + (\frac{dy}{dx})^2\}^{\frac{1}{2}}$	
		c)	Given an equation $y = e^{mx}$ where m is a constant, find a differential equation for the given function removing all the constants.	4
1	6	a)	Find the generic formulation to solve $\int \cos^n dx$ where n is an odd integer	5
			number. Using the formulation solve for $\int \cos^5 dx$.	
		b)	Given an equation $y = c(x - c)^2$, find a different equation for the given function. Here c is a constant.	4
		c)	Given a differential equation $\frac{dy}{dx} = -\frac{x}{y}$, find the original equation removing the differential operator.	3
	7	a)	Given a differential equation, $e^y tany dx + (1 - e^x) sec^2 y dy = 0$, find the original equation removing the differential operator.	4
		b)	Solve for the following equation, $ (x + y)^2 \frac{dy}{dx} = a^2. $	4
		c)	Solve for the following differential equation,	4
-			$\frac{dy}{dx} = \sin(x+y) + \cos(x+y)$	
8	3	a)	Solve for the following homogenous differential equation: $ (x^3 + 3xy^2) dx + (y^3 + 3xy^2) dy = 0 $	4
		b)	Given the following non-homogenous differential equation, solve it to find the original equation:	4
			$\frac{dy}{dx} = \frac{x+2y-3}{2x+y-3}$	
		c)	You are given the following differential equation. Solve it to find the original equation:	4.
			$\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$	

17/12/2024 14:59