DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING UNIVERSITY OF BARISAL

Final Examination

Course Title: Digital Logic Design

Course Code: CSE-2103

2nd Year 1st Semester

Session: 2020-21 (Admission Session 2019-20)

Time: 3 hour

Marks: 60

Answer any five Questions from the followings.

1. a) Implement the Boolean function

[3

$$F = xy + x'y' + y'z$$

- i. With AND, OR, and inverter gates
- ii. With NOR and inverter gates,
- iii. With NAND and inverter gates.
- b) Show that a positive logic NAND gate is a negative logic NOR gate and vice versa.

[3]

c) Write Boolean expressions and construct the truth tables describing the outputs of the circuits described by the following logic diagrams:

2. a) Express the following function as a sum of minterms and as a product of maxrerms:

[2]

$$F(A,B,C,D) = B'D + A'D + BD$$

Simplify the following Boolean functions, using Karnaugh maps:

[6

$$F(w, x, y, z) = \sum (2, 3, 12, 13, 14, 15)$$

$$F(A,B,C,D) = \sum (0,2,4,5,6,7,8,10,13,15)$$

c) Implement the following Boolean function F, together with the don't-care conditions d, using no [4] more than two NOR gates:

$$F(A,B,C,D) = \sum (2,4,6,10,12)$$

$$d(A,B,C,D) = \sum (0,8,9,13)$$

Assume that both the normal and complement inputs are available.

					E.
4	a)	a)	Explain how a NAND/NOR latch store a bit. Mention their limitations.	[3]	MAN
		b)	What is the limitation of S-R flip-flop? Explain how the limitation can be resolved.	[4]	-
		c)	Define race-around condition in J-K flip-flop. How can you overcome the problem? Explain with an appropriate figure and waveforms.	[5]	1
(4,	2)	What is the limitation of a parallel adder? Using 74LS83 ICs, draw a 16 bit parallel Adder.	[3]	1
	0	25	Explain how 2's complement system can facilitate arithmetic operations in digital computing.	[3]	
		c)	Draw a parallel adder/subtractor using 2's-complement system and explain its operations.	[6]	
4	5.	a)	Draw a Mod-14 and a Decade ripple counter with their state transition diagram.	[4]	
		b)	Show how to wire the 74293 IC as a MOD-6 counter.	[2]	
		c)	Explain the operation of a Synchronous up/down MOD-8 counter with an appropriate diagram.	[6]	
6	i. ,	a)	Write short notes on the followings:	[5]	
	/		I) Fan-Out		
			II) Noise Immunity		
			III) Propagation delay		
			IV) Characteristics of TTL logic gate.		
	t)	Design and explain the working principle of a TTL NOR gate.	Į:	5]
	С		A certain TTL IC output is rated at $I_{OH}(max) = 800 \mu A$ and $I_{OL} = 48 mA$. Express the IC's far out in terms of unit loads. [consider $1UL = 40 \mu A$ in the HIGH state and $1.6 mA$ in the LOW state]		[2]
7.	a))	Design a 1 of 8 decoder using logic gates.		[4]
	b)	Use 74LS138 ICs to design a 1 of 32 decoder.		[5]
	c))	Draw the internal diagram of a 8:1 encoder.		[3]
8.	a)	What is Multiplexer? Design an 8-input MUX and explain its operation.		[4]
	b		How can you use a 74138 IC as a DEMUX? Explain with diagram.		[4]
			a to the Control of Table Deliver designal decoder		[4]

c) Draw the logic diagram for the 7442 BCD to decimal decoder.