Turing Test:

® What It Is: The Turing Test, created by Alan Turing in 1950, is
designed to determine if a machine can exhibit human-like intelligence.
e How It Works: In this test, a person has conversations with both a

machine and a human without knowing which is which. If the person
cannot tell them apart, the machine is considered to have passed the test
and demonstrated intelligence similar to a human's.

o Turing's Prediction: Turing believed that by the year 2000, machines
would be able to fool 30% of human judges in a five-minute
conversation.

/.Ti J"UM
HUMAMN
INTERROGATOR : E.—- ?

The Turing Test is a significant milestone in artificial intelligence (Al) as it
sets a benchmark for machines' ability to interact like humans.

In AI, PEAS stands for Performance, Environment, Actuators, and Sensors.
This model helps us understand what an intelligent agent is supposed to do,
the conditions it works in, and how it interacts with its surroundings. Here’s a
more detailed look at each element:

1. Performance:
o This is a way to measure how well the agent is doing its job. We
define specific goals or criteria to determine if the agent is
successful.

AVAILABLE AT:

http://www.onebyzeroedu.com

o For example, in a vacuum cleaning robot, performance can be
measured by how much dirt it collects, how well it avoids
obstacles, or how efficiently it cleans a room without using too
much power.

o Performance measures can vary depending on the task. For a
self-driving car, it might be how safely it drives or how well it
follows traffic laws.

2. Environment:

o The environment is the world or setting in which the agent
operates. It includes everything around the agent that it can
interact with or be affected by.

o The environment can be simple or complex. For a chess-playing
Al, the environment is limited to the chessboard, pieces, and
rules. However, for a self-driving car, the environment is much
more complex, including roads, traffic signals, pedestrians, other
vehicles, and weather conditions.

o Understanding the environment helps the agent make informed
decisions and adapt to changes.

3. Actuators:

o Actuators are the physical components that allow the agent to
take action. They enable it to interact with or affect its
environment.

o For example, a robot might have wheels to move, arms to pick up
objects, or a vacuum motor to clean surfaces.

o In a self-driving car, actuators could include the steering system,
brakes, accelerator, and other controls that help the car navigate.

4. Sensors:

o Sensors help the agent observe and gather information about the
environment. They are like the agent’s eyes, ears, and other
senses.

o For instance, a self-driving car uses cameras, radar, and LiDAR
to detect obstacles, traffic signals, and road markings.

AVAILABLE AT

http://www.onebyzeroedu.com

o In a smart thermostat, sensors detect room temperature and
humidity. These inputs help the agent make better decisions and
respond to changes in real-time.

Summary:

The PEAS model helps break down the key parts of an Al agent's design. It
answers questions like: What is the agent'’s purpose? Where will it operate?
How will it act? How will it perceive? This model is useful for designing and
evaluating Al systems in various applications, from robots and cars to games
and home assistants.

In AL, an Agent is an entity that can perceive its environment, make
decisions, and take actions to achieve specific goals. Agents use sensors to
observe their environment and actuators to perform actions. They aim to
make decisions that maximize their success in completing tasks.

Types of Agents

1. Simple Reflex Agents:
o These agents respond directly to what they perceive, without
considering past experiences.
o They work well in simple environments where quick responses
are needed.
o Example: A basic thermostat that turns the heater on or off based
on the current temperature.
2. Model-Based Reflex Agents:
o These agents keep track of some information about the world to
handle partially observable environments.
o They use a model (internal memory) to understand how the
world changes.
o Example: A cleaning robot that remembers where it has already
cleaned.

AVAILABLE AT

http://www.onebyzeroedu.com

3. Goal-Based Agents:
o These agents act to achieve specific goals, not just to respond to
immediate inputs.
o They make decisions by comparing actions that bring them closer
to their goal.
o Example: A GPS system that finds the best route to reach a
destination.

4. Utility-Based Agents:
o These agents aim not just to achieve a goal but to maximize their
happiness or "utility."
o They use a utility function to compare different actions and
choose the one with the highest satisfaction.
o Example: A self-driving car that balances safety, comfort, and
speed.
5. Learning Agents:
o These agents improve over time by learning from their
experiences.
o They have components that let them adapt and perform better
after every action.
o Example: A recommendation system that learns user preferences
and suggests better options over time.

Key Concepts Related to Agents

e Perception: Agents use sensors to perceive their environment. For
example, a camera on a robot is a sensor.

e Action: Agents use actuators to perform actions. For instance, a robot's
wheels act as actuators for movement.

AVAILABLE AT

http://www.onebyzeroedu.com

e Environment: The setting where the agent operates. It can be simple
(like a board game) or complex (like real-world traffic).

e Rationality: A rational agent always tries to make the best decision
based on its knowledge and goals.

Summary:

Agents are central to AI because they interact with their environment and
make decisions. Each type of agent is suitable for different tasks, from simple
reactions to complex, goal-oriented learning. Understanding these types helps
in designing Al systems that work effectively in various situations.

Vacuum-cleaner world

» Percepts:

A B
Location and status, ﬂ !
e.g., [A,Dirty]

- . (o] S
» Actions: _ 0980 090
Left, Right, Suck, NoOp

Example vacuum agent program:

function Vacuum-Agent([location,status]) returns an action
» if status = Dirty then return Suck

» else if location = A then return Right

» else if location = B then return Left

Machine Learning

Machine learning is a field of study focused on teaching computers to
perform tasks by using data. Instead of programming the computer with
specific instructions for every task, machine learning allows the computer to
analyze data, identify patterns, and learn from experiences.

For example, if you want a computer to recognize images of cats and dogs,
you would provide it with many labeled pictures of both animals. The

AVAILABLE AT

http://www.onebyzeroedu.com

machine learning algorithm would then learn the differences between the two
by examining the features of the images. Over time, it gets better at
identifying new pictures without needing explicit instructions for each one.

Machine learning can be applied to many areas, such as:

e Recommendation Systems: Like those used by Netflix or Amazon,
which suggest movies or products based on your past behavior.

e Spam Detection: Email services use machine learning to filter out
spam by learning from previous spam messages.

e Voice Recognition: Virtual assistants like Siri or Google Assistant
learn to understand spoken language through exposure to many
different voices and accents.

In summary, machine learning enables computers to improve their
performance on tasks through experience, making them more adaptable and
efficient in handling complex problems.

Machine Learning

This is the study of how to make computers work by giving them data. This
way, they can learn to do things on their own without being told exactly how
to do it.

Neural Networks

These are groups of algorithms that are designed to work like the human
brain. Neural networks help solve complicated machine learning problems.

Robotics

Robotics is a part of Al that focuses on robots. These robots are artificial
beings that operate in the real world. An Al robot can interact with its
surroundings by sensing, moving, and taking appropriate actions.

AVAILABLE AT

http://www.onebyzeroedu.com

Expert Systems

An expert system is a computer program that imitates how a human makes
decisions. It uses Al to simulate the judgment and behavior of someone with
expert knowledge in a specific area.

Fuzzy Logic Systems

Fuzzy logic is a way of computing that deals with "degrees of truth" instead
of just "true or false" (1 or 0) like regular computers. Fuzzy logic systems can
understand unclear or noisy information.

Natural Language Processing (NLP)

NLP is an Al method that studies human language to gain useful insights and
solve problems.

Artificial Intelligence (Al) is a way for machines to act like humans.
Machine Learning (ML) is a part of Al It involves teaching computers to do
things by giving them data so they can learn on their own without needing
specific instructions. In other words, machine learning is a method used to
create artificial intelligence.

Here’s a simplified explanation of how Al can help a bank manager
determine loan approvals using the K-Nearest Neighbors (KNN) algorithm:

Using Al for Loan Approval Decisions

A bank manager has a large dataset with records of thousands of loan
applicants. Al can assist the manager in deciding which loans to approve by
using the KNN algorithm, which classifies loan requests into two categories:
Approved and Disapproved.

AVAILABLE AT

http://www.onebyzeroedu.com

1. Data Collection:
o Collect data about loan applicants, such as account balance,
credit amount, age, occupation, and loan history.
2. Data Cleaning:
o Remove unnecessary information that doesn't help in predicting
loan approvals, like telephone numbers.
3. Data Exploration & Analysis:
o Analyze data to understand relationships between different
variables.
4. Building a Machine Learning Model:
o Use K-Nearest Neighbors (KNN) to classify loan applications.
5. Model Evaluation:

o Test how well the machine learning model works. Adjust settings

if needed.

Conclusion:

By following these steps, Al can help the bank manager make informed
decisions about loan approvals.

Here’s a simplified explanation of the differences between parametric and
non-parametric models:

Parametric Models

1. Definition: Have a fixed number of parameters.
2. Examples: Common examples include:
o Linear Regression: Models the relationship between variables
using a straight line.
o Logistic Regression: Used for binary classification problems,
estimating probabilities.

AVAILABLE AT

http://www.onebyzeroedu.com

3. Characteristics:
o The number of parameters is set before analyzing the data.

Non-Parametric Models

1. Definition: Do not have a fixed number of parameters.
2. Examples: Common examples include:
o Decision Trees: Models that split data into branches based on
feature values to make decisions.
o K-Nearest Neighbors (KNN): Classifies data points based on the
majority class of their nearest neighbors.
3. Characteristics:
o The number of parameters can grow with the dataset size.

Summary of Differences

e Parameters: Parametric models have a fixed number; non-parametric
models do not.

e Flexibility: Parametric models are less flexible; non-parametric models
are more adaptable.

Q-Learning

e Definition: A reinforcement learning algorithm that helps an agent
learn the best actions.

Reinforcement Learning

e Definition: A type of machine learning where an agent learns to make
decisions by receiving rewards or penalties.

AVAILABLE AT

http://www.onebyzeroedu.com

TensorFlow

e Definition: An open-source library for building and training machine

learning models.

Artificial Intelligence (Al)

e Definition: Al is about making computer systems that can think, learn,

and solve problems like people do..

The four main sources that demonstrate human intelligence:

l.

3.
4.

Problem-Solving Ability: The capacity to analyze, understand, and
solve problems.

. Learning and Adaptation: The ability to acquire knowledge and adjust

behavior.
Language and Communication: Proficiency in expressing ideas.
Emotional Intelligence: Awareness and management of emotions.

Agent

Definition: An agent can sense its environment and take actions.

Rational Agent

Definition: An agent that makes the best decisions based on goals and
knowledge.

Concise definitions:

AN i

State: A specific situation in a problem.

State Space: All possible states.

Search Space: Area where a search algorithm looks.
Search Node: A point in the search space.

Goal: The desired outcome.

Action: A move to change the current state.

AVAILABLE AT

http://www.onebyzeroedu.com

7. Transition Model: Describes how actions change states.
8. Branching Factor: Average number of actions available from a state.

4. List the criteria to measure the performance of different search

strategies. [3]
M1 DTAILI] DLIALTHITD

Algorithm Time Space
complexity complexity

If all step o(b?) o(b?)
costs are equal

UCSsS Yes Yes Number of nodes with g(n) = C*
DES No No O(b™) O(bm)

If all step
IDS Yes 0O(b9) O(bd)

costs are equal

Worst case: O(b™)

Greed N N
Y ° ° Best case: O(bd)

A* Yes Yes Number of nodes with g(n)+h(n) = C*

maximum branching factor of the search tree

depth of the optimal solution

maximum length of any path in the state space
: cost of optimal solution

Q3 e

Searching Problem Components

1. Start State: This is the initial point where the agent begins its search
process. It represents the starting condition or situation for the search.

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

. Actions: These define all possible actions that the agent can take from
a given state. Each action moves the agent from one state to another
within the search space.

. Transition Model: This model describes the outcome of each action,
showing how one state changes to another. It helps the agent predict the
results of its actions.

. Goal Test: This is a function that checks if the current state matches the
desired goal state. If the goal 1s reached, the function returns a positive
result, indicating success.

5. Path Cost: This function assigns a numerical value or "cost" to each

path taken. It helps evaluate different paths, allowing the agent to find

the least costly or optimal path to the goal.

Parameters

Known as

Using Knowledge

Informed Search
Also known as Heuristic Search

Uses knowledge for the search

Uninformed Search
Also known as Blind Search

Does not use knowledge for the search

process process
Performance Finds a solution more quickly Finds solutions slower compared to
informed search

Completion May or may not be complete Always complete

Cost Factor Low cost High cost

Time Consumes less time due to quicker Consumes moderate time due to slower
search search

Examples of o Greedy Search o Depth First Search (DFS)

Algorithms e A* Search o Breadth First Search (BFS)
e AO* Search e Branch and Bound

AVAILABLE AT

o Hill Climbing Algorithm

http://www.onebyzeroedu.com

In time complexity, which Informed Search is better and why? [5]
Answer:

Informed Search Algorithm Comparison:

Informed search algorithms, also called heuristic searches, use
problem-specific information to guide the search process and find solutions
more efficiently. Choosing the best-informed search algorithm depends on the
problem and the quality of the heuristic function used.

A* Search

e How it works: A* combines the cost-so-far (g (n)) and an estimate of
the remaining cost (h(n)) to decide which path to take.

e Time Complexity: The time complexity depends on how good h(n)
is. If h(n) is admissible (doesn’t overestimate the cost) and

consistent (follows the triangle inequality), A* will find the optimal
solution.

e Worst Case: The time complexity is exponential, O(b”d), where b is
the branching factor (maximum number of possible moves) and d is the
depth of the solution. However, with a well-designed heuristic, A*
often performs closer to linear time, O (b”h), where h is the effective
search depth.

Greedy Best-First Search

e How it works: Greedy Best-First Search only uses h(n) to expand the
node that seems closest to the goal based on the heuristic.

e Time Complexity: Generally, it has lower time complexity than A*,
but it doesn’t guarantee the best solution. Greedy Best-First can find a

solution fast if h(n) leads it efficiently toward the goal, but it may find

a less optimal solution if h (n) is inaccurate or overestimates the cost.

AVAILABLE AT

http://www.onebyzeroedu.com

Which Algorithm is Better?

® A Search*: Preferred if there’s an admissible and consistent heuristic
available, and finding the best solution is critical.

e Greedy Best-First Search: Often better if a quick solution is
acceptable, even if it may not be optimal, as it can be faster when a
strong heuristic is available.

Constraints: A constraint is a rule or condition that limits the possible values
a variable can take. It must be satisfied for the solution to be valid.

Backtracking Search: This is a method for solving Constraint Satisfaction
Problems (CSPs). It involves trying different values for the variables one by
one. If a value does not satisfy the constraints, the search "backtracks" to try a
different value until a valid solution is found or all possibilities are explored.

Arc Consistency: This is a concept in CSPs to ensure that for every variable,
the possible values are consistent with the constraints between related
variables. In other words, it checks that for every pair of variables, the value
of one variable should have a compatible value in the other variable's domain
according to the constraint

Here are some real-world examples of Constraint Satisfaction Problems
(CSPs):

1. Assignment Problems: For example, assigning teachers to classes
based on their expertise and availability, or assigning employees to
specific shifts.

2. Timetable Problems: For instance, deciding when and where each
class will be held in a school or university, ensuring there are no
conflicts with rooms or instructors.

3. Transportation Scheduling: Assigning vehicles to specific routes and
times, ensuring that buses or trains are scheduled efficiently and do not
overlap.

AVAILABLE AT

http://www.onebyzeroedu.com

4. Factory Scheduling: Deciding the production schedule in a factory,
ensuring that each machine is used efficiently while meeting deadlines
and resource constraints.

How many solutions are there for the map-coloring problem in the
following figure? The possible colors are three (red, green, and blue), and
no neighboring regions can have the same colors.

Solution:

The task is to color each region of the map using three colors: red, green, or
blue, while ensuring that no neighboring regions have the same color. The
domains for each region (variable) are {red, green, blue}.

1. Coloring the SA (South Australia) region:

o We start by coloring the SA region. Since no colors are restricted
at this point, we can choose any of the 3 colors (red, green, or
blue).

o So, there are 3 possibilities for the SA region.

2. Coloring the WA (Western Australia) region:

o After coloring SA, we move to WA. Since WA is neighboring
SA, 1t cannot have the same color as SA. This means we have 2
remaining color choices for WA.

o So, there are 2 possibilities for the WA region.

3. Coloring the other regions:

o The remaining regions (NT, NSW, V) can be colored based on
the constraints, but since there are no specific restrictions
provided, we can choose any color for each of them.

o For T (Tasmania), as it’s not connected to any other region, it can
be colored with any of the 3 colors.

o Thus, T has 3 possibilities.

AVAILABLE AT

http://www.onebyzeroedu.com

4. Total number of solutions:
o For each of the 6 possibilities of coloring SA and WA, there are 3
possibilities for coloring T.
o Therefore, the total number of possible solutions is:
3 x 2 x 3 =18 solutions.

Thus, there are 18 possible solutions for coloring the map using three colors.
Example of a CSP Problem:

Consider the map coloring problem where the goal is to assign colors to 7
cities in such a way that no neighboring regions have the same color. The
available colors are red, green, and blue.

| =)
viewsria
Variables: =
WA (Western Australia) SA (South Australia
T (Tasmania)
NT (Northern Territory) V (Victoria)
Q (Queensland) NSW (New South Wales)

Domains:

e Each variable (city) can take one of the following colors: {red, green,
blue}.

AVAILABLE AT

http://www.onebyzeroedu.com

Constraints:

e No neighboring regions (cities) can have the same color. For example:
o WA#NT,WA#SA, NT#Q, NSW#Q, NSW#V

Solutions:

e A solution is a complete and consistent assignment of colors to each
region where all the constraints are satisfied.
e For example, one possible solution could be:

WA =red, NT = green, Q =red, NSW = green, V =red, SA = blue, T = green

In this solution, no two neighboring regions have the same color, and all
variables are assigned a valid color from the domain.\

Definitions in the context of CSPs:

1. Domain:
The domain refers to the set of possible values that a variable can take
in a CSP. It represents the allowable choices for that variable.
Example: In a Sudoku puzzle, the domain for each cell is {1, 2, 3, 4, 5,
6, 7, 8, 9} because those are the possible numbers that can be placed in
each cell.

2. Variable:
A variable in a CSP represents an unknown quantity that needs to be
assigned a value from its domain to satisfy the constraints.
Example: In a scheduling problem, variables could represent tasks, and
each variable's domain would be the available time slots for the task.

3. Constraint:
A constraint defines the relationship or condition that must be satisfied
by the values assigned to a set of variables.
Example: In the N-Queens problem, the constraint is that no two
queens can share the same row, column, or diagonal.

AVAILABLE AT

http://www.onebyzeroedu.com

(‘1 f \
) L) L) - -
\’\'_/ \“/ \T"‘\\ b \‘r‘:‘\\
Y / [\ I|I \\
\ [\ \ N
Y f L|I ||I \ h
\'\ \ [I\ N

5) -~ . :
(:) |\H/II (\ () :\T‘/ ijl J
// \\\ y / / \\ N \ ?lj]_ \ N\ ' \.
/ \\\ /, / \ I."f ! \I\. \ \ \ \ \ _\:\\
3

e f‘\
-

I

|
i
f

! / r13 \ ,f’f \
Aul & odpeee e den

What is the significance of the alpha and beta values in the alpha-beta
pruning process, and how are they updated as the algorithm traverses the
tree? (5)

The alpha and beta values in the alpha-beta pruning process are essential for
efficiently pruning branches of the game tree while performing a Minimax
search. They help determine which branches can be discarded without
needing to fully explore them, making the search more efficient. Here's a
breakdown of their significance and how they are updated during the search:

Alpha (a):

e Significance:
Alpha represents the best score found so far for the maximizing player

AVAILABLE AT

http://www.onebyzeroedu.com

(e.g., Player A). It acts as a lower bound for the possible outcomes of a
node for Player A.

o [nitial Value:
It starts with a value of negative infinity because the maximizing player
is looking for the highest possible score.

o Update:
As the algorithm explores the game tree, when evaluating a maximizing
node (Player A's turn), the value of alpha is updated if the node's value
is greater than the current alpha. This ensures that alpha always holds
the highest score found on Player A's path so far.

Beta (B):

® Significance:
Beta represents the best score found so far for the minimizing player
(e.g., Player B). It acts as an upper bound for the possible outcomes of
a node for Player B.

o [nitial Value:
It starts with a value of positive infinity because the minimizing player
1s looking for the lowest possible score.

o Update:
As the algorithm explores the tree, when evaluating a minimizing node
(Player B's turn), the value of beta is updated if the node's value is less
than the current beta. This ensures that beta always holds the lowest
score found on Player B's path so far.

Updating Alpha and Beta During Traversal:

® Maximizing Node (Player A's turn):
If the value of the current node is greater than the current alpha, alpha
is updated to the node’s value because it provides a better (higher)
score for Player A.

® Minimizing Node (Player B's turn):
If the value of the current node is less than the current beta, beta is

AVAILABLE AT

http://www.onebyzeroedu.com

updated to the node’s value because it provides a better (lower) score
for Player B.

Pruning Conditions:

® Pruning based on Alpha:
If the value of a node is greater than or equal to beta, then Player B (the
minimizing player) would never choose this branch, as there is already
a better option for Player B. In this case, the subtree rooted at this node
can be pruned (not explored).

® Pruning based on Beta:
If the value of a node is less than or equal to alpha, then Player A (the
maximizing player) would never choose this branch, as there is already
a better option for Player A. In this case, the subtree rooted at this node
can be pruned (not explored).

Summary:

e Alpha tracks the best (maximum) score for the maximizing player.

e Beta tracks the best (minimum) score for the minimizing player.

e As the algorithm explores nodes, alpha and beta are updated based on
the values found.

e When a node violates the pruning conditions (either alpha > beta or
beta < alpha), its subtree is discarded, reducing the search space and
making the algorithm more efficient.

Max Node and Min Node in Minimax Algorithm:
In the Minimax algorithm:

e A max node represents a state where it’s the maximizing player’s turn
(Player A). The goal of the maximizing player is to pick the move that
gives the highest possible score.

AVAILABLE AT

http://www.onebyzeroedu.com

e A min node represents a state where it’s the minimizing player’s turn
(Player B). The goal of the minimizing player is to pick the move that
minimizes Player A’s score.

These nodes are used to simulate the alternating turns of both players, helping
the algorithm evaluate the best and worst outcomes for each player at every
decision point in a game.

Alpha and Beta in Alpha-Beta Pruning:
In alpha-beta pruning:

e Alpha (a) is the best score found so far for the maximizing player. It
starts at negative infinity and gets updated with higher scores as the tree
is explored.

e Beta (P) is the best score found so far for the minimizing player. It
starts at positive infinity and is updated with lower scores as the tree is
explored.

These values help prune (eliminate) parts of the tree that can’t influence the
final decision:

e I[fanode’s value is greater than or equal to beta, the minimizing player
will avoid that branch.

e [fanode’s value is less than or equal to alpha, the maximizing player
will avoid that branch.

Impact of Alpha-Beta Pruning on Efficiency:

Alpha-beta pruning improves the efficiency of the Minimax algorithm by
reducing the number of nodes that need to be evaluated. It does this by
pruning branches that are guaranteed to be suboptimal based on the alpha and
beta values. As the algorithm explores the tree, it can stop exploring branches

AVAILABLE AT

http://www.onebyzeroedu.com

early if they can’t affect the outcome. This reduces the search space and
speeds up the decision-making process without changing the final result.

Question 1: Check the validity of the following implications [Each
Marks-2] P— (Q— R) equivalent to (P— Q) — (P—R)

Answer:
PIQIR|Q=R|IPoQ | PR |(PoQ = (P=R |P=(Q =R
T|T| T T T T T T
T|T|F F T F F
TI|F|T T F T T T
T|F | F T F F T T
F|T|T T | T T T
F|T|F F T T T T
FIFI|T T T T T T
F|F|F T T T T T

5th batch Solved.

l.a

Here is the PEAS description for a Virtual English Tutor Agent in a table format:

Parameter Description
Performance Accuracy of responses, Student engagement, Learning progress, Quality of feedback

Environment Student inputs (text, speech), Course materials (lessons, quizzes), Student behavior, External

resources (dictionaries, grammar checkers)
Actuators Text and voice output, Text and voice input, Visual feedback (error highlighting)

Sensors Speech recognition, Text input analysis, Emotion detection (engagement level), Progress

tracking (performance data)

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

1 b. Define Agent and Rational Agent through real-time example [3]

e An agent is a software program that operates within an environment,
perceives its surroundings, makes decisions, and takes actions to
achieve specific goals. Agent = Architecture + Program

® Real-Time Example:

A self-driving car is a perfect example of an agent. It uses sensors like
cameras and radar to perceive its surroundings, processes the data, and
takes actions accordingly. The car's goal is to navigate safely and
efficiently to its destination. It detects obstacles, traffic signs, and other
vehicles, and uses decision-making algorithms to decide when to
accelerate, brake, or change lanes. The car interacts with the
environment and makes intelligent decisions, making it an agent.

® Rational Agent:
A rational agent always chooses the best course of action based on its
knowledge and goals, aiming to maximize its expected outcome or
utility.

® Real-Time Example:
A virtual personal assistant, like Amazon's Alexa or Apple's Siri, is a
rational agent. It uses natural language processing to understand user
commands, fetches relevant information, and provides responses or
performs tasks. These assistants learn from user interactions and
feedback to improve their performance, always striving to offer
accurate and useful responses. Their goal is to assist users effectively
by making rational decisions on how to interpret and respond to
queries.

AVAILABLE AT

http://www.onebyzeroedu.com

1.c Distinguish between the following properties of a task
environment:[3] i. Static or dynamic ii. Discrete or continuous iii.
Single or multi-agent

i. Static or Dynamic:

e Static: The environment does not change while the agent is performing
its task. Example: Chess, where the state doesn’t change until a move is
made.

e Dynamic: The environment changes while the agent is acting.
Example: A self-driving car, where traffic and road conditions
constantly change.

ii. Discrete or Continuous:

e Discrete: The environment has clear, distinct steps or states. Example:
Tic-tac-toe, where moves are limited and clear.
e Continuous: The environment has an infinite number of states or

actions. Example: Driving a car, where actions like speed and direction
are continuously adjusted.

iii. Single or Multi-Agent:

e Single-Agent: Only one agent is working to achieve its goal. Example:
A robot cleaning a room.

e Multi-Agent: Multiple agents interact with each other. Example:
Football, where players work or compete to achieve their goals.

2.c Prove that the time and space complexity of BF'S is O(b"d). And
explain it with an example [4]

AVAILABLE AT

http://www.onebyzeroedu.com

%.Q_JTH ond Sphce Cmrpi‘ci-'g of- DBFs : chd)
ta Here, 'b' W brardeha Jrckor owd 4! dertt

In OF, pe clove alk node +ill At grogh omive Ha Fargtt rode
Agt (evel , b'=1
2rd (eved b' z b
7ed leveh b = b~
i e s
Cum of ald, ppius -- -+ = BF b

. d
- O(°)(Pﬁnrc&)

d) Does artificial intelligence provide an alternative to biological
substances? [2]

No, artificial intelligence (Al) does not provide an alternative to biological
substances. Al refers to computer systems designed to perform tasks
requiring human-like intelligence, such as problem-solving and
decision-making. However, it lacks the biological characteristics of living
organisms, such as growth, reproduction, and metabolism. Al operates based
on algorithms and data processing, while biological substances are made up
of organic molecules and possess life functions. Al can assist and enhance
human tasks but does not replace biological life.

3.a) Prove that A* search is optimal if h(n) is admissible(Grrohon
Joggo).[3]

AVAILABLE AT

http://www.onebyzeroedu.com

= Im A* %eovch o) =g+ h(n)
Under stamobm !) ¢ h'(m)
Over<chmadkiom hn)> h*m)

Hf'l'f, h(nj_}egﬁﬂﬂ heuristie velue
h* () - Adual value

T2 AA)Y0 (A) =200
" @ |2

() =260

R (02 E‘(a)ﬂ‘lﬂ

(o) =50

Cose-1 : (Dypechimie)
h(m=%0
I fb):?ﬂ:l 7 I’\'
Fm= geayrhen
=160 4+ &0

= .50
f(m) =gC6)+h(0)

= 240 + #0
= 270

ey e

4 (6)= § @+ (&)

Here, goto g +thrngh
ord £ =25p ond £(1)-73
©, &t elusle 42 f(A)

6.b) What is natural language processing (NLP)? Describe the

\ asge-24 (Underghimat)
h(a)=%0 ‘J ¥
< h

h(B) =20
Lm=am ki
= 100+4%0
=250
foy=g(m +8¢ hwy
= pd® + 710
=940

ao -

£(6)= 9 (&) r k(e

=1%o +0
=495D
10 010
2)10

Mere, 90 Jo G Hhroupd @ and F(a)
[greter Ham gco), <o, nolo c.l-mh
A . 4 @)= 2o +o =240

S0 here e got ophimPd wolue

development steps for a typical NLP application.[3]

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career

The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Natural Language Processing (NLP) is a branch of artificial intelligence
that helps computers understand, interpret, and generate human language. It
includes tasks like speech recognition, translation, and text analysis.

Steps to Develop a Typical NLP Application:

1. Data Collection and Preprocessing:

o Collect text or speech data (e.g., articles, books, or social media
posts).

o Clean and process the data by removing unnecessary words and
characters. This includes breaking the text into smaller parts
(tokenization) and removing common words (like "the" or "is").

2. Text Representation:

o Convert the text into a format the computer can understand, like

numbers or vectors (e.g., Word2Vec or GloVe embeddings).
3. Modeling and Training:

o Use machine learning or deep learning models to learn from the
data. The model identifies patterns and meanings to perform tasks
(like sentiment analysis or translation).

4. Evaluation and Fine-Tuning:

o Test the model’s performance using metrics (accuracy, precision,

etc.). Adjust the model if needed to improve results.
5. Deployment:

o Deploy the trained model in a real-world application, such as a

chatbot or translation tool, for users to interact with.

This process ensures the NLP application works well and provides useful
results based on human language.

AVAILABLE AT

http://www.onebyzeroedu.com

Aspect Strong Al

Definition Al with human-like intelligence and

consciousness

Capabilities Can understand, learn, and reason across

various domains

Example Hypothetical; true human-like robots

Applications

Goal Achieve general intelligence similar to
humans

Weak Al

Al focused on specific tasks without

consciousness

Limited to predefined tasks; lacks

broad reasoning

Virtual assistants, autonomous cars,
chatbots

Enhance specific task efficiency and

aCcuracy

Among given Option which Algorithm Requires Less Memory? And
Why? Give With An Example. 1.0ptimal Search 2.Depth Search

3.Breadth First search 4. Linear search.

1. Optimal Search:

e Memory Requirement: Varies depending on the specific optimal
search algorithm being used. For example, Binary Search (an optimal

search in sorted arrays) has low memory requirements since it uses only

constant O(1)O(1)O(1) space.

e Example: Binary Search only keeps track of the search bounds (left

and right indices), using minimal memory.

e Conclusion: Very efficient in memory usage, as it doesn’t need to store

additional nodes or paths.

2. Depth-First Search (DFS):

e Memory Requirement: Uses memory proportional to the maximum
depth of the tree or graph (up to O(d)O(d)O(d), where ddd is the depth).

e Example: In a graph with deep paths, DFS only needs to remember
nodes along the current path, making it efficient for deep structures

with few branches.

AVAILABLE AT

http://www.onebyzeroedu.com

e Conclusion: DFS generally uses less memory than BFS in large, deep
graphs, as it only needs to store nodes on the current path.

3. Breadth-First Search (BFS):

e Memory Requirement: Requires memory proportional to the width of
the tree or graph level, which can be up to O(bd)O(b”d)O(bd), where
bbb is the branching factor and ddd is the depth.

e Example: In a binary tree, BFS stores all nodes at the current level,
which can grow quickly for wide trees.

e Conclusion: BFS tends to require more memory than DFS, especially
in wide trees or graphs.

4. Linear Search:

e Memory Requirement: Constant O(1)O(1)O(1), as it simply traverses
each element in a list sequentially without additional storage.

e Example: Scanning an array from start to finish to find a target value.

e Conclusion: Very memory-efficient, as it only requires a single pointer
or index variable, regardless of the list size.

Summary:
In terms of memory efficiency (from lowest to highest memory requirement):

1. Linear Search — requires constant memory.

2. Optimal Search (like Binary Search) — also very efficient, with
minimal memory usage.

3. DFS — more memory-efficient than BFS in deep trees or graphs.

4. BFS — requires more memory in wide or large trees due to storing
nodes at each level.

So, Linear Search and Optimal Search use the least memory, followed by
DFS, while BFS requires the most memory for wide structures.

First order Logic Questions: FOL

AVAILABLE AT

https://chatgpt.com/share/6730a473-49a4-8001-8d4d-408fa8bcd05d
http://www.onebyzeroedu.com

In time complexity, which Uninformed Search is better and why? [5]

Time Complexity of Uninformed Search Algorithms:

1. Depth-First Search (DFS):
o Time Complexity: O(b"m), where b is the branching factor and

m is the maximum depth.

o Best For: Shallow goal nodes and memory efficiency. DFS
explores one branch deeply before backtracking, requiring less
memory than BFS.

o Cons: May explore deep branches unnecessarily, leading to poor
performance if the goal is deep.

2. Breadth-First Search (BFS):

o Time Complexity: O(b”d), where d is the depth of the
shallowest solution.

o Best For: Finding the shortest path when all actions have equal
cost. Guarantees an optimal solution when the goal is at a shallow
depth.

o Cons: High memory usage, storing all nodes at each depth level.

3. Uniform Cost Search (UCS):

o Time Complexity: O(b”d) in the worst case, similar to BFS.

o Best For: Problems with variable path costs. It ensures the
optimal solution in terms of path cost.

o Cons: Can be slower than BFS if path costs vary significantly.

Conclusion:

e DFS is optimal for shallow goals with memory constraints.

e BFS guarantees the shortest path in terms of steps for shallow goals.

e UCS is best for problems where path costs vary and you need the
optimal path based on cost.

The choice depends on the problem's characteristics (goal depth, branching
factor, and action cost).

AVAILABLE AT

http://www.onebyzeroedu.com

Constraint Satisfaction Problems (CSPs) are a fundamental concept
in Artificial Intelligence (Al) used to solve problems where the goal is to find
a solution that satisfies a set of constraints. CSPs are common in various
applications such as scheduling, planning, Map Coloring, Resource
allocation, and games like Sudoku. In Al, CSPs provide a structured way to
model problems where each possible solution must meet specific restrictions
or rules.

Video

11

Key Terms in CSPs:

Variables

e Definition: Variables are the entities in the problem that need to be
assigned values.

e Example: In map coloring, each region on the map is a variable. For
instance, on a map with regions A, B, C, D, and E, each of these
regions represents a different variable that needs to be assigned a color.

Domains

e Definition: Each variable has a domain, which is the set of possible
values it can take.

e Example: For map coloring, if we are using three colors — Red,
Green, and Blue — then the domain for each region (variable) is {Red,
Green, Blue}. This means each region can be assigned one of these
colors.

AVAILABLE AT

https://www.youtube.com/watch?v=8_w2jVzjQvY
https://www.youtube.com/watch?v=CN8qXdXfxZ0&list=PLdNrrMDccCp3NYSz2somSWU4s4JEFvBTq
http://www.onebyzeroedu.com

Constraints

e Definition: Constraints specify the relationships and restrictions
between variables. They limit the combinations of values that variables
can simultaneously take.

e Example: In map coloring, a constraint is that no two neighboring
regions should share the same color. So, if region A is adjacent to
region B, they cannot both be colored Red. This constraint applies to all
pairs of neighboring regions.

Goal

e Definition: The objective of a CSP is to find an assignment of values to
variables such that all constraints are satisfied.

e Example: In map coloring, the goal is to assign a color to each region
so that no two neighboring regions have the same color. This ensures
that all constraints are met, and the map is properly colored.

Explanation of Forward Checking, Backward Checking and Arc
Consistency:

Forward Checking, Backward Checking, and Arc Consistency (AC) are all
techniques used in solving Constraint Satisfaction Problems (CSPs) to make
the search process more efficient by reducing the solution space. Here’s a
breakdown of each:

1. Forward Checking

Forward Checking is a method used to prevent future conflicts as we assign
values to variables during the CSP search. When a value is assigned to a
variable, Forward Checking immediately checks if the assignment affects the
domain of the neighboring (or "unassigned") variables.

AVAILABLE AT

http://www.onebyzeroedu.com

e How it Works: After assigning a value to a variable, Forward
Checking looks at the constraints involving that variable and other
unassigned variables. It removes values from the domains of
unassigned variables that would lead to constraint violations.

e Example: In Sudoku, if a cell is assigned the value "5," Forward
Checking would remove "5" from the domain of all cells in the same
row, column, and block, as "5" would be an invalid choice for those
cells.

e Pros and Cons: Forward Checking reduces the number of possible
future choices early on, potentially avoiding dead ends. However, it
doesn’t eliminate all possible inconsistencies, as it only considers direct
neighbors.

2. Backward Checking (Backtracking)

Backward Checking, commonly known as Backtracking, is a general
approach in CSPs where we assign values to variables one by one and
backtrack whenever a constraint violation is detected.

e How it Works: In Backtracking, values are assigned sequentially. If a
partial assignment results in a constraint violation, Backtracking undoes
(or "backs up" from) the most recent assignment and tries a new value.
This process continues until a solution is found or all possibilities are
exhausted.

e Example: If you are assigning colors to regions on a map (a classic
CSP problem), and assigning "Red" to one region prevents any valid
color assignment for neighboring regions, Backtracking would undo
that assignment and try a different color.

e Pros and Cons: While straightforward and systematic, pure
Backtracking can be slow in large problems as it explores each
possibility without additional checks. However, combined with other
techniques like Forward Checking, it becomes much more efficient.

3. Arc Consistency (AC)

AVAILABLE AT

http://www.onebyzeroedu.com

Arc Consistency is a more advanced technique that enforces consistency
between pairs of variables, helping to eliminate invalid values from domains
early in the search process.

e How it Works: Arc Consistency ensures that, for every pair of
variables involved in a constraint (referred to as an "arc"), each value in
the domain of one variable has a valid corresponding value in the
domain of the other. If no such value exists, that value is removed from
the domain.

o The AC-3 Algorithm is commonly used to enforce arc
consistency. It repeatedly checks all arcs in the problem until no
more values can be removed from any domain.

e Example: In a map-coloring problem, if one region has a limited set of
colors due to neighboring assignments, Arc Consistency would remove
colors from neighboring regions' domains that would lead to conflicts,
thus narrowing down the choices.

e Pros and Cons: Arc Consistency can greatly reduce the search space
by pruning invalid values early on. However, maintaining arc
consistency can be computationally intensive, as it may need to check
and revise domains repeatedly.

Comparing Forward Checking, Backward Checking, and Arc
Consistency

e Forward Checking is useful for detecting conflicts at each step as
values are assigned, preventing some invalid choices from progressing
further.

e Backward Checking (Backtracking) is the base search method and
can be improved when used with Forward Checking and heuristics.

AVAILABLE AT

http://www.onebyzeroedu.com

e Arc Consistency takes a more global view by refining the domains
before any specific assignment is made, which can prevent large
portions of the search space from needing to be explored.

Which is Better?

e For small or simple CSPs (like the map coloring of a few regions),
Backtracking or Forward Checking may be enough because the
problem size doesn’t justify the overhead of full arc consistency.

e For larger or more complex CSPs with many constraints, Arc
Consistency (AC-3) is usually more efficient in the long run because it
prunes the search space extensively, reducing the need for
backtracking.

In summary:

e Arc Consistency > Forward Checking > Backtracking for complex
problems due to its ability to reduce the search space significantly.

e For simpler CSPs, Forward Checking strikes a good balance between
efficiency and ease of implementation.

AVAILABLE AT

http://www.onebyzeroedu.com

Slide from video:

- s L |
2) Arc consistency: A variable in a CSP is arc-consistent if every value in its domain satisfies the variable’s binary
constraints. T et

e

¢ More formally, Xi is arc-consistent with respect to another variable Xj if for every value in the current domain Di
there is some value in the domain Dj that satisfies the binary constraint on the arc (Xi, Xj).

e Anetwork s arc-consistent if every variable is arc consistent with every other variable.

+ Forexample, consider the constraintY = X? where the domain of both X andY is the set of positive integers
below 10. We can write this constraint explicitly as (X, Y), {(o, 0), (1, 2), (2, 4), (3, 9))} -

e To make X arc-consistent with respect toY , we reduce X's domain to {o, 1, 2, 3}. If we also make Y arc-consistent
with respect to X, thenY ‘s domain becomes {o, 1, 4, 9} and the whole CSP is arc-consistent.

* Depth-first search for CSPs with

* In backtracking, only one successor is generated at a time rather than all successors; each partially expanded
node remembers which successor to generate next. In this way, only O(m) memory is needed rather than O(bm).

Northern
Territory

Queensland

South
Australia

WA=blug

New South Wales

NT=green NT=blue
\ T
WA =red
=green
Q=blue

e T o—

AVAILABLE AT:

http://www.onebyzeroedu.com

(_ Most constrained variable:
cho i ith the fewest legal values

» minimum remaining values (MRV) heuristic

» Tie-breaker among most constrained variables
» Most constraining variable:

— choose the variable with the most constraints on remaining variables

¢ |dea:

— Keep track of remaining legal values for unassigned variables
— Terminate search when any variable has no legal values

WA

NT Q NSW Vv

D T A
i

I---I---I---I---I---Iq[- 1 1

(] s Emsm/meome/mom] \oe]me -]
[— | Hoaoaam mElmsm] AL I |
[— | 1L \/l_[\/\/\/ H el

Procedure (Uniform Cost Search)

1. Initialize the priority queue with the start node S and cost 0.

2. Push the path with the lowest cost.
3. Expand this node to all its neighbors, calculate the path cost, and push
unvisited or lower-cost paths to the priority queue.

4. Repeat until the goal node G is dequeued with the minimum cost.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career

The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Procedure (A Algorithm)*

1. Initialize the priority queue with start node S and cost 0 (f(n) = g(n) +
h(n)).

2. Pop the node with the lowest f(n).

Check if the goal node G is reached. If yes, return the path and cost.

4. Expand the current node's neighbors, calculate g(neighbor) and
f(neighbor), and push unvisited or lower-cost paths to the priority
queue.

5. Repeat until the goal is found or the queue is empty.

(98]

ﬂfj%n“ / —1:_"_"%093""% ﬁjg_nﬂ hrj P,,g 'iﬁjﬁ,,i
\ into?'y |
2 L) Sinfde il Pl

g 9) Groal Based Agents

. " L' o i
P s) Uty -Based Agorts
‘ ncmﬁﬁ(gdimo | ; 5) L‘la}min(j ﬂjent{
alg o_? ﬂj(n-l»-h i—z\iah meommn(t || Pi?m]fohmnu
gbhm%d Qqu{. . g E\n\:}nnmm{‘
‘ | © ACHionA
@l;mﬂ Aedion, | SR vntine c
jert ~ Poceps Dacisipy —> Actiony

AVAILABLE AT

http://www.onebyzeroedu.com

uSimh?o, % Fljaﬂvrbs ”
2/ At only on the basis of cwwrent
Fahctf:hm
'\'.’/'jj“ﬂm the st of pewcept F\i»s{-och
= Based on TP - Then Rules

> Environ 0
- rould be -Fuq A obsvvable .

ILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT: .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

"Model Baked Reflex Agent”

. ’ tate ‘S’Qn %09

cepra

gnvmonmen{'

I
| Vi
How the wonﬂd w,’“+ "’hf UJO?‘IM
Evolves is 0iRe now

1}
whﬁ'f’ AC"‘I'OM I
Should Hake nw |

Step 2: Create the Truth Tables for Each Statement

We'll make a truth table for both statements and check if they are true in all cases, which would

establish their validity.

Statement: P — (Q - R) = (P - Q) — (P — R)

Let's start with a truth table to analyze each part of this equivalence.

Q— P (Q— P = P = (P—Q)—

P Q@ R R R) Q R (P~ R) Equivalent?
T T T T T T T T T
T T F F F T F F T
T F T T T F T T T
T F F T T F F T T
F T T T T T T T T
F T F F T T T T T
F F T T T T T T T
F F F T T T T T T

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

In the table:
e Column 5 represents P — (Q — R).

e Column 8 represents (P — Q) — (P — R).

The two columns match in all cases, meaning Statement 1 is valid (the expressions are equivalent).

Statement2: (P - Q)V (R — S)| = [(PVR) = (QV S)]|

Now, let's construct the truth table for this statement.

(P — (PV
P R — Q) VvV Pv RV | R)—
P Q| B |S|Q S (R— S) R S (@VS) Equivalent?
T T T T T T T T T T T
T T T F T F T T T T T
T T F T T T T T T T T
T T F F T T T T T T T
T F T T F T T T T T T
T F T F F F F T F F T
T F F T F T T T T T T
T F F F F T T T F F T
F T T T T T T T T T T
F T T F T F T T T T T
F T F T T T T F T T T
F T F F T T T F T T T
F F T T T T T F T T T
FF T F T F T F F T T
F F F T T T T F T T T
FoF F F T T T : F T T

In this table:
* Column 7 represents (P — Q) V (R — 5).

* Column 10 represents (P V R) — (Q V 5).

Since the implication holds in every row (Column 10 is always true), Statement 2 is also valid.

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

1. Implication (-):
e Symbol: A —+ B
* Definition: A — B is false only when A is true and B is false. In all other cases, it is true.

* Truth table:

A B A—- B
T T T
T F F
F T T
F F T

2. Or (Disjunction, v):
e Symbol: AV B
e Definition: A V B is true if at least one of A or B is true.

e Truth table:

A B Av DB
T T T
T F T
F T T
F F F

3. And (Conjunction, A):
e Symbol: AN B
e Definition: A A B is true if both A and B are true.

e Truth table:

A B AAB
T T T
T F F
F T F
F F F

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

4. Negation (Not, -):
e Symbol: - A
e Definition: = A is true if A is false, and false if A is true.

* Truth table:

A —-A
T F
F T

5. Biconditional («=):
e Symbol A+ B

e Definition: A <+ B is true if A and B are both true or both false (they have the same truth

value).

* Truth table:

A B A« B
T T T
T F F
F T F
F F T

6. Exclusive Or (XOR, &):
e Symbo: A& B
e Definition: A @ B is true if either A or B is true, but not both.

* Truth table:

A B AeB
T T F
T F T
F T T
F F F

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

7. Nand (-~ A):
e Symbol: AT B
e Definition: A T Bistrueif A A B is false (the negation of "and").

* Truth table:

A B AT B
T T F
T F T
F T T
F F T
8. Nor (~v):
e Symbol: A | B

* Definition: A | Bistrue if AV B is false (the negation of "or").

e Truth table:

A B Al B
T T F
T F F
F T F
F F T

Local Search Algorithms

Local search algorithms are well-suited for solving optimization problems
where the main goal is to find an optimal or near-optimal solution based on
an objective function. These problems are distinct in that:

e There is no specific start state, and the path to a solution is not relevant.
e Instead, the focus is on evaluating potential solutions based on an
objective function that quantifies solution quality. The aim is to either

AVAILABLE AT

http://www.onebyzeroedu.com

minimize or maximize the value of this function to obtain the best
possible solution.

Examples:

1. Traveling Salesman Problem (TSP)
o Objective: Find the shortest possible route that visits each city
once and returns to the starting point.
o State Space: All possible routes (tours) connecting the set of
cities.
o Objective Function: Total length of the tour, which the
algorithm seeks to minimize.
2. n-Queens Problem
o Objective: Place nnn queens on an nxnn \times nnxn chessboard
so that no two queens threaten each other.
o State Space: All possible configurations of n queens on the
board.
o Objective Function: Number of pairwise conflicts between
queens (to be minimized).

Local search algorithms are especially useful for large state spaces where
traditional search methods are impractical.

Forward Chaining

Forward chaining starts with known facts and uses rules to find new facts
step-by-step until it reaches a conclusion. This is called a data-driven
approach because it moves forward based on what we already know.

Example: Rules:

e If an animal has feathers, it 1s a bird.
e [f an animal is a bird and cannot fly, it is a penguin.

AVAILABLE AT

http://www.onebyzeroedu.com

Facts:

e The animal has feathers.
e The animal cannot fly.

Starting with the facts, we apply the rules: since the animal has feathers, it’s a
bird. Then, since it’s a bird and cannot fly, we conclude it’s a penguin.

Backward Chaining

Backward chaining starts with a goal and works backward, using rules to see
if the known facts support it. This is a goal-driven approach.

Example: Goal: Is the animal a penguin?

1. To confirm, we need to show it’s a bird and cannot fly.
2. From the known facts, we see the animal has feathers, so it’s a bird, and
it cannot fly.

By working backward, we confirm that the animal is a penguin.

6th batch(8):

AVAILABLE AT

http://www.onebyzeroedu.com

1. No one talks: Vz (M (z) — —T'(z))

2. Everyone loves himself: V L(z, x)

3. Everyone loves everyone: Vx Vy L(x,y)

4. Everyone loves everyone except himself: Vo Vy (z # y — L(x,y))

5. Not all cars have carburetors: -V (C(xz) — H(x))

6. Every connected and circuit-free graph is a tree: Vz ((C'(z) A F(z)) — T'(x))
7. All that glitters is not gold: 3z (G(z) A ~Go(z))

8. Not all that glitters is gold: =V (G(z) — Go(z))

9. There is a barber who shaves all men in the town who do not shave themselves: Jz (B(:B) A

Yy (M (y) A—=S(y,y)) — S(z,9)))

b.
Limitations of First-Order Logic (FOL):

1. Cannot Express Beliefs or Knowledge: FOL lacks the ability to
represent statements about knowledge or beliefs, like "Alice knows
Bob is honest."

2. No Probabilistic Reasoning: FOL cannot handle uncertain or
probabilistic information, as it only expresses absolute truths (true or
false).

AVAILABLE AT

http://www.onebyzeroedu.com

C.

To prove that the proposition A A =A V (B V C) is a contradiction, we can use a truth table. A
contradiction is a statement that is always false, regardless of the &ruth values of its variables.
Proposition:

AN-AV(BVC(C)

Steps:
1. List all possible truth values for the variables A, B, and C.

2. Evaluate the components of the proposition step by step:

. A

. -4

.« BVC

o« AN-A v

* Final expression AAN—-AV (BV C)

Truth Table:

A B C -A BvC AN-A AN-AV (BVC)

T T T F T F T

T T F F T F T

T F T F T F T

T F F F F F F

F T T T T F T

F T F T T F T

F F T T T F T

F F F T F F F

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Conclusion:

The expression A A = A V (B V C) is not a contradiction. It evaluates to true for some
combinations of truth values for A, B, and C. Therefore, it is not always false. Thus, the proposition is

not a contradiction.

d

Truth Table:
A B AVB -A -B -AN-B
T T T F F F
T F T F T F
F T T T F F
F F F T T T
Conclusion:

The truth table shows that (A V B) and (=4 A =B) do not have the same truth values in every

possible case. Therefore, the two propositions are not equivalent.

In fact, they are contradictory. The statement (A \V B) is the opposite of (A A —B), which is a

form of De Morgan's Law, where:
* (AV B)is true when at least one of A or Bis true.

o (A A —B)is true only when both A and B are false.

Thus, these propositions are not logically equivalent.

7.a

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

What is the Probabilistic resoning? how is probilistic

Reasoning different from logical Reasoning ?

Ans:

Probabilistic reasoning involves making inferences and decisions based on
the likelihood or probability of events happening, rather than definite
true/false values. It is used to model uncertainty and deal with situations
where information is incomplete or uncertain

or example, if you know there is a 70% chance of rain tomorrow,
probabilistic reasoning allows you to make decisions based on this
uncertainty, like carrying an umbrella.

Difference Between Probabilistic and Logical Reasoning:

Aspect Probabilistic Reasoning Logical Reasoning
Inference Based on probabilities, dealing with Based on certainty, true or false.
uncertainty.
Handling Handles uncertainty and partial Assumes complete and certain
Uncertainty knowledge. information.
Conclusion Conclusions are likely, not guaranteed. Conclusions are definite (true/false).
Key Difference:

e Probabilistic Reasoning involves uncertainty and likelihood, while
Logical Reasoning assumes certainty and clear truth values.

agee Video pre Solution.

AVAILABLE AT

https://www.youtube.com/watch?v=DVnubVOjZtg&t=498s
http://www.onebyzeroedu.com

AVAILABLE AT: .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

