
1C H A P T E R

Introduction

Practice Exercises

1.1 What are the three main purposes of an operating system?
Answer:
The three main puropses are:

• To provide an environment for a computer user to execute programs
on computer hardware in a convenient and efficient manner.

• To allocate the separate resources of the computer as needed to
solve the problem given. The allocation process should be as fair
and efficient as possible.

• As a control program it serves two major functions: (1) supervision
of the execution of user programs to prevent errors and improper use
of the computer, and (2) management of the operation and control
of I/O devices.

1.2 We have stressed the need for an operating system to make efficient use
of the computing hardware. When is it appropriate for the operating
system to forsake this principle and to “waste” resources? Why is such
a system not really wasteful?
Answer:
Single-user systems should maximize use of the system for the user. A
GUI might “waste” CPU cycles, but it optimizes the user’s interaction
with the system.

1.3 What is the main difficulty that a programmer must overcome in writing
an operating system for a real-time environment?
Answer:
The main difficulty is keeping the operating system within the fixed time
constraints of a real-time system. If the system does not complete a task
in a certain time frame, it may cause a breakdown of the entire system it
is running. Therefore when writing an operating system for a real-time
system, the writer must be sure that his scheduling schemes don’t allow
response time to exceed the time constraint.

1

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

2 Chapter 1 Introduction

1.4 Keeping in mind the various definitions of operating system, consider
whether the operating system should include applications such as Web
browsers and mail programs. Argue both that it should and that it should
not, and support your answers.
Answer:
An argument in favor of including popular applications with the
operating system is that if the application is embedded within the
operating system, it is likely to be better able to take advantage of
features in the kernel and therefore have performance advantages
over an application that runs outside of the kernel. Arguments against
embedding applications within the operating system typically dominate
however: (1) the applications are applications - and not part of an
operating system, (2) any performance benefits of running within the
kernel are offset by security vulnerabilities, (3) it leads to a bloated
operating system.

1.5 How does the distinction between kernel mode and user mode function
as a rudimentary form of protection (security) system?
Answer:
The distinction between kernel mode and user mode provides a rudi-
mentary form of protection in the following manner. Certain instructions
could be executed only when the CPU is in kernel mode. Similarly, hard-
ware devices could be accessed only when the program is executing in
kernel mode. Control over when interrupts could be enabled or disabled
is also possible only when the CPU is in kernel mode. Consequently, the
CPU has very limited capability when executing in user mode, thereby
enforcing protection of critical resources.

1.6 Which of the following instructions should be privileged?

a. Set value of timer.

b. Read the clock.

c. Clear memory.

d. Issue a trap instruction.

e. Turn off interrupts.

f. Modify entries in device-status table.

g. Switch from user to kernel mode.

h. Access I/O device.

Answer:
The following operations need to be privileged: Set value of timer, clear
memory, turn off interrupts, modify entries in device-status table, access
I/O device. The rest can be performed in user mode.

1.7 Some early computers protected the operating system by placing it in
a memory partition that could not be modified by either the user job
or the operating system itself. Describe two difficulties that you think
could arise with such a scheme.
Answer:

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Practice Exercises 3

The data required by the operating system (passwords, access controls,
accounting information, and so on) would have to be stored in or passed
through unprotected memory and thus be accessible to unauthorized
users.

1.8 Some CPUs provide for more than two modes of operation. What are
two possible uses of these multiple modes?
Answer:
Although most systems only distinguish between user and kernel
modes, some CPUs have supported multiple modes. Multiple modes
could be used to provide a finer-grained security policy. For example,
rather than distinguishing between just user and kernel mode, you
could distinguish between different types of user mode. Perhaps users
belonging to the same group could execute each other’s code. The
machine would go into a specified mode when one of these users was
running code. When the machine was in this mode, a member of the
group could run code belonging to anyone else in the group.

Another possibility would be to provide different distinctions within
kernel code. For example, a specific mode could allow USB device drivers
to run. This would mean that USB devices could be serviced without
having to switch to kernel mode, thereby essentially allowing USB device
drivers to run in a quasi-user/kernel mode.

1.9 Timers could be used to compute the current time. Provide a short
description of how this could be accomplished.
Answer:
A program could use the following approach to compute the current
time using timer interrupts. The program could set a timer for some
time in the future and go to sleep. When it is awakened by the interrupt,
it could update its local state, which it is using to keep track of the
number of interrupts it has received thus far. It could then repeat this
process of continually setting timer interrupts and updating its local
state when the interrupts are actually raised.

1.10 Give two reasons why caches are useful. What problems do they solve?
What problems do they cause? If a cache can be made as large as the
device for which it is caching (for instance, a cache as large as a disk),
why not make it that large and eliminate the device?
Answer:
Caches are useful when two or more components need to exchange
data, and the components perform transfers at differing speeds. Caches
solve the transfer problem by providing a buffer of intermediate speed
between the components. If the fast device finds the data it needs in the
cache, it need not wait for the slower device. The data in the cache must
be kept consistent with the data in the components. If a component has
a data value change, and the datum is also in the cache, the cache must
also be updated. This is especially a problem on multiprocessor systems
where more than one process may be accessing a datum. A component
may be eliminated by an equal-sized cache, but only if: (a) the cache
and the component have equivalent state-saving capacity (that is, if the
component retains its data when electricity is removed, the cache must

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

4 Chapter 1 Introduction

retain data as well), and (b) the cache is affordable, because faster storage
tends to be more expensive.

1.11 Distinguish between the client–server and peer-to-peer models of
distributed systems.
Answer:
The client-server model firmly distinguishes the roles of the client and
server. Under this model, the client requests services that are provided
by the server. The peer-to-peer model doesn’t have such strict roles. In
fact, all nodes in the system are considered peers and thus may act as
either clients or servers—or both. A node may request a service from
another peer, or the node may in fact provide such a service to other
peers in the system.

For example, let’s consider a system of nodes that share cooking
recipes. Under the client-server model, all recipes are stored with the
server. If a client wishes to access a recipe, it must request the recipe from
the specified server. Using the peer-to-peer model, a peer node could ask
other peer nodes for the specified recipe. The node (or perhaps nodes)
with the requested recipe could provide it to the requesting node. Notice
how each peer may act as both a client (it may request recipes) and as a
server (it may provide recipes).

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

2C H A P T E ROperating-
System
Structures

Practice Exercises

2.1 What is the purpose of system calls?
Answer:
System calls allow user-level processes to request services of the operat-
ing system.

2.2 What are the five major activities of an operating system with regard to
process management?
Answer:
The five major activities are:

a. The creation and deletion of both user and system processes

b. The suspension and resumption of processes

c. The provision of mechanisms for process synchronization

d. The provision of mechanisms for process communication

e. The provision of mechanisms for deadlock handling

2.3 What are the three major activities of an operating system with regard
to memory management?
Answer:
The three major activities are:

a. Keep track of which parts of memory are currently being used and
by whom.

b. Decide which processes are to be loaded into memory when
memory space becomes available.

c. Allocate and deallocate memory space as needed.

2.4 What are the three major activities of an operating system with regard
to secondary-storage management?
Answer:
The three major activities are:

5

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

6 Chapter 2 Operating-System Structures

• Free-space management.

• Storage allocation.

• Disk scheduling.

2.5 What is the purpose of the command interpreter? Why is it usually
separate from the kernel?
Answer:
It reads commands from the user or from a file of commands and executes
them, usually by turning them into one or more system calls. It is usually
not part of the kernel since the command interpreter is subject to changes.

2.6 What system calls have to be executed by a command interpreter or shell
in order to start a new process?
Answer:
In Unix systems, a fork system call followed by an exec system call need
to be performed to start a new process. The fork call clones the currently
executing process, while the exec call overlays a new process based on a
different executable over the calling process.

2.7 What is the purpose of system programs?
Answer:
System programs can be thought of as bundles of useful system calls.
They provide basic functionality to users so that users do not need to
write their own programs to solve common problems.

2.8 What is the main advantage of the layered approach to system design?
What are the disadvantages of using the layered approach?
Answer:
As in all cases of modular design, designing an operating system in
a modular way has several advantages. The system is easier to debug
and modify because changes affect only limited sections of the system
rather than touching all sections of the operating system. Information
is kept only where it is needed and is accessible only within a defined
and restricted area, so any bugs affecting that data must be limited to a
specific module or layer.

2.9 List five services provided by an operating system, and explain how each
creates convenience for users. In which cases would it be impossible for
user-level programs to provide these services? Explain your answer.
Answer:
The five services are:

a. Program execution. The operating system loads the contents (or
sections) of a file into memory and begins its execution. A user-level
program could not be trusted to properly allocate CPU time.

b. I/O operations. Disks, tapes, serial lines, and other devices must be
communicated with at a very low level. The user need only specify
the device and the operation to perform on it, while the system
converts that request into device- or controller-specific commands.
User-level programs cannot be trusted to access only devices they

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Practice Exercises 7

should have access to and to access them only when they are
otherwise unused.

c. File-system manipulation. There are many details in file creation,
deletion, allocation, and naming that users should not have to
perform. Blocks of disk space are used by files and must be tracked.
Deleting a file requires removing the name file information and
freeing the allocated blocks. Protections must also be checked
to assure proper file access. User programs could neither ensure
adherence to protection methods nor be trusted to allocate only
free blocks and deallocate blocks on file deletion.

d. Communications. Message passing between systems requires
messages to be turned into packets of information, sent to the
network controller, transmitted across a communications medium,
and reassembled by the destination system. Packet ordering and
data correction must take place. Again, user programs might not
coordinate access to the network device, or they might receive
packets destined for other processes.

e. Error detection. Error detection occurs at both the hardware and
software levels. At the hardware level, all data transfers must be
inspected to ensure that data have not been corrupted in transit. All
data on media must be checked to be sure they have not changed
since they were written to the media. At the software level, media
must be checked for data consistency; for instance, whether the
number of allocated and unallocated blocks of storage match the
total number on the device. There, errors are frequently process-
independent (for instance, the corruption of data on a disk), so there
must be a global program (the operating system) that handles all
types of errors. Also, by having errors processed by the operating
system, processes need not contain code to catch and correct all the
errors possible on a system.

2.10 Why do some systems store the operating system in firmware, while
others store it on disk?
Answer:
For certain devices, such as handheld PDAs and cellular telephones, a
disk with a file system may be not be available for the device. In this
situation, the operating system must be stored in firmware.

2.11 How could a system be designed to allow a choice of operating systems
from which to boot? What would the bootstrap program need to do?
Answer:
Consider a system that would like to run both Windows XP and three
different distributions of Linux (e.g., RedHat, Debian, and Mandrake).
Each operating system will be stored on disk. During system boot-up, a
special program (which we will call the boot manager) will determine
which operating system to boot into. This means that rather initially
booting to an operating system, the boot manager will first run during
system startup. It is this boot manager that is responsible for determining
which system to boot into. Typically boot managers must be stored at

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

8 Chapter 2 Operating-System Structures

certain locations of the hard disk to be recognized during system startup.
Boot managers often provide the user with a selection of systems to boot
into; boot managers are also typically designed to boot into a default
operating system if no choice is selected by the user.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

3C H A P T E R

Processes

Practice Exercises

3.1 Using the program shown in Figure 3.30, explain what the output will
be at Line A.
Answer:
The result is still 5 as the child updates its copy of value. When control
returns to the parent, its value remains at 5.

3.2 Including the initial parent process, how many processes are created by
the program shown in Figure 3.31?
Answer:
There are 8 processes created.

3.3 Original versions of Apple’s mobile iOS operating system provided no
means of concurrent processing. Discuss three major complications that
concurrent processing adds to an operating system.
Answer: FILL

3.4 The Sun UltraSPARC processor has multiple register sets. Describe what
happens when a context switch occurs if the new context is already
loaded into one of the register sets. What happens if the new context is
in memory rather than in a register set and all the register sets are in
use?
Answer:
The CPU current-register-set pointer is changed to point to the set
containing the new context, which takes very little time. If the context is
in memory, one of the contexts in a register set must be chosen and be
moved to memory, and the new context must be loaded from memory
into the set. This process takes a little more time than on systems with
one set of registers, depending on how a replacement victim is selected.

3.5 When a process creates a new process using the fork() operation, which
of the following state is shared between the parent process and the child
process?

a. Stack

9

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

10 Chapter 3 Processes

b. Heap

c. Shared memory segments

Answer:
Only the shared memory segments are shared between the parent
process and the newly forked child process. Copies of the stack and
the heap are made for the newly created process.

3.6 With respect to the RPC mechanism, consider the “exactly once” semantic.
Does the algorithm for implementing this semantic execute correctly
even if the ACK message back to the client is lost due to a network
problem? Describe the sequence of messages and discuss whether
“exactly once” is still preserved.
Answer:
The “exactly once” semantics ensure that a remore procedure will
be executed exactly once and only once. The general algorithm for
ensuring this combines an acknowledgment (ACK) scheme combined
with timestamps (or some other incremental counter that allows the
server to distinguish between duplicate messages).

The general strategy is for the client to send the RPC to the server
along with a timestamp. The client will also start a timeout clock. The
client will then wait for one of two occurrences: (1) it will receive an ACK
from the server indicating that the remote procedure was performed,
or (2) it will time out. If the client times out, it assumes the server was
unable to perform the remote procedure so the client invokes the RPC a
second time, sending a later timestamp. The client may not receive the
ACK for one of two reasons: (1) the original RPC was never received by
the server, or (2) the RPC was correctly received—and performed—by
the server but the ACK was lost. In situation (1), the use of ACKs allows
the server ultimately to receive and perform the RPC. In situation (2),
the server will receive a duplicate RPC and it will use the timestamp to
identify it as a duplicate so as not to perform the RPC a second time. It
is important to note that the server must send a second ACK back to the
client to inform the client the RPC has been performed.

3.7 Assume that a distributed system is susceptible to server failure.
What mechanisms would be required to guarantee the “exactly once”
semantics for execution of RPCs?
Answer:
The server should keep track in stable storage (such as a disk log)
information regarding what RPC operations were received, whether
they were successfully performed, and the results associated with the
operations. When a server crash takes place and a RPC message is
received, the server can check whether the RPC had been previously
performed and therefore guarantee “exactly once” semanctics for the
execution of RPCs.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

4C H A P T E R

Threads

Practice Exercises

4.1 Provide three programming examples in which multithreading provides
better performance than a single-threaded solution.
Answer:

a. A Web server that services each request in a separate thread.

b. A parallelized application such as matrix multiplication where
different parts of the matrix may be worked on in parallel.

c. An interactive GUI program such as a debugger where a thread is
used to monitor user input, another thread represents the running
application, and a third thread monitors performance.

4.2 What are two differences between user-level threads and kernel-level
threads? Under what circumstances is one type better than the other?
Answer:

a. User-level threads are unknown by the kernel, whereas the kernel
is aware of kernel threads.

b. On systems using either M:1 or M:N mapping, user threads are
scheduled by the thread library and the kernel schedules kernel
threads.

c. Kernel threads need not be associated with a process whereas every
user thread belongs to a process. Kernel threads are generally
more expensive to maintain than user threads as they must be
represented with a kernel data structure.

4.3 Describe the actions taken by a kernel to context-switch between kernel-
level threads.
Answer:
Context switching between kernel threads typically requires saving the
value of the CPU registers from the thread being switched out and
restoring the CPU registers of the new thread being scheduled.

11

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

12 Chapter 4 Threads

4.4 What resources are used when a thread is created? How do they differ
from those used when a process is created?
Answer:
Because a thread is smaller than a process, thread creation typically
uses fewer resources than process creation. Creating a process requires
allocating a process control block (PCB), a rather large data structure.
The PCB includes a memory map, list of open files, and environment
variables. Allocating and managing the memory map is typically the
most time-consuming activity. Creating either a user or kernel thread
involves allocating a small data structure to hold a register set, stack,
and priority.

4.5 Assume that an operating system maps user-level threads to the kernel
using the many-to-many model and that the mapping is done through
LWPs. Furthermore, the system allows developers to create real-time
threads for use in real-time systems. Is it necessary to bind a real-time
thread to an LWP? Explain.
Answer:
Yes. Timing is crucial to real-time applications. If a thread is marked as
real-time but is not bound to an LWP, the thread may have to wait to
be attached to an LWP before running. Consider if a real-time thread is
running (is attached to an LWP) and then proceeds to block (i.e. must
perform I/O, has been preempted by a higher-priority real-time thread,
is waiting for a mutual exclusion lock, etc.) While the real-time thread is
blocked, the LWP it was attached to has been assigned to another thread.
When the real-time thread has been scheduled to run again, it must first
wait to be attached to an LWP. By binding an LWP to a real-time thread
you are ensuring the thread will be able to run with minimal delay once
it is scheduled.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

5C H A P T E R

Process
Synchronization

Practice Exercises

5.1 In Section 5.4, we mentioned that disabling interrupts frequently can
affect the system’s clock. Explain why this can occur and how such
effects can be minimized.
Answer:
The system clock is updated at every clock interrupt. If interrupts were
disabled—particularly for a long period of time—it is possible the
system clock could easily lose the correct time. The system clock is
also used for scheduling purposes. For example, the time quantum for a
process is expressed as a number of clock ticks. At every clock interrupt,
the scheduler determines if the time quantum for the currently running
process has expired. If clock interrupts were disabled, the scheduler
could not accurately assign time quantums. This effect can be minimized
by disabling clock interrupts for only very short periods.

5.2 Explain why Windows, Linux, and Solaris implement multiple locking
mechanisms. Describe the circumstances under which they use spin-
locks, mutex locks, semaphores, adaptive mutex locks, and condition
variables. In each case, explain why the mechanism is needed.
Answer:
These operating systems provide different locking mechanisms depend-
ing on the application developers’ needs. Spinlocks are useful for
multiprocessor systems where a thread can run in a busy-loop (for a
short period of time) rather than incurring the overhead of being put in
a sleep queue. Mutexes are useful for locking resources. Solaris 2 uses
adaptive mutexes, meaning that the mutex is implemented with a spin
lock on multiprocessor machines. Semaphores and condition variables
are more appropriate tools for synchronization when a resource must
be held for a long period of time, since spinning is inefficient for a long
duration.

5.3 What is the meaning of the term busy waiting? What other kinds of
waiting are there in an operating system? Can busy waiting be avoided
altogether? Explain your answer.

13

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

14 Chapter 5 Process Synchronization

Answer:
Busy waiting means that a process is waiting for a condition to be satisfied
in a tight loop without relinquishing the processor. Alternatively, a
process could wait by relinquishing the processor, and block on a
condition and wait to be awakened at some appropriate time in the
future. Busy waiting can be avoided but incurs the overhead associated
with putting a process to sleep and having to wake it up when the
appropriate program state is reached.

5.4 Explain why spinlocks are not appropriate for single-processor systems
yet are often used in multiprocessor systems.
Answer:
Spinlocks are not appropriate for single-processor systems because the
condition that would break a process out of the spinlock can be obtained
only by executing a different process. If the process is not relinquishing
the processor, other processes do not get the opportunity to set the
program condition required for the first process to make progress. In a
multiprocessor system, other processes execute on other processors and
thereby modify the program state in order to release the first process
from the spinlock.

5.5 Show that, if the wait() and signal() semaphore operations are not
executed atomically, then mutual exclusion may be violated.
Answer:
A wait operation atomically decrements the value associated with a
semaphore. If two wait operations are executed on a semaphore when
its value is 1, if the two operations are not performed atomically, then it is
possible that both operations might proceed to decrement the semaphore
value, thereby violating mutual exclusion.

5.6 Illustrate how a binary semaphore can be used to implement mutual
exclusion among n processes.
Answer:
The n processes share a semaphore, mutex, initialized to 1. Each process
Pi is organized as follows:

do {
wait(mutex);

/* critical section */

signal(mutex);

/* remainder section */
} while (true);

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

6C H A P T E R

CPU Scheduling

Practice Exercises

6.1 A CPU-scheduling algorithm determines an order for the execution
of its scheduled processes. Given n processes to be scheduled on one
processor, how many different schedules are possible? Give a formula
in terms of n.
Answer:
n! (n factorial = n × n – 1 × n – 2 × ... × 2 × 1).

6.2 Explain the difference between preemptive and nonpreemptive schedul-
ing.
Answer:
Preemptive scheduling allows a process to be interrupted in the midst of
its execution, taking the CPU away and allocating it to another process.
Nonpreemptive scheduling ensures that a process relinquishes control
of the CPU only when it finishes with its current CPU burst.

6.3 Suppose that the following processes arrive for execution at the times
indicated. Each process will run for the amount of time listed. In
answering the questions, use nonpreemptive scheduling, and base all
decisions on the information you have at the time the decision must be
made.

Process Arrival Time Burst Time
P1 0.0 8
P2 0.4 4
P3 1.0 1

a. What is the average turnaround time for these processes with the
FCFS scheduling algorithm?

b. What is the average turnaround time for these processes with the
SJF scheduling algorithm?

c. The SJF algorithm is supposed to improve performance, but notice
that we chose to run process P1 at time 0 because we did not know

15

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

16 Chapter 6 CPU Scheduling

that two shorter processes would arrive soon. Compute what the
average turnaround time will be if the CPU is left idle for the first
1 unit and then SJF scheduling is used. Remember that processes
P1 and P2 are waiting during this idle time, so their waiting time
may increase. This algorithm could be known as future-knowledge
scheduling.

Answer:

a. 10.53

b. 9.53

c. 6.86

Remember that turnaround time is finishing time minus arrival time, so
you have to subtract the arrival times to compute the turnaround times.
FCFS is 11 if you forget to subtract arrival time.

6.4 What advantage is there in having different time-quantum sizes at
different levels of a multilevel queueing system?
Answer:
Processes that need more frequent servicing, for instance, interactive
processes such as editors, can be in a queue with a small time quantum.
Processes with no need for frequent servicing can be in a queue with
a larger quantum, requiring fewer context switches to complete the
processing, and thus making more efficient use of the computer.

6.5 Many CPU-scheduling algorithms are parameterized. For example, the
RR algorithm requires a parameter to indicate the time slice. Multilevel
feedback queues require parameters to define the number of queues,
the scheduling algorithms for each queue, the criteria used to move
processes between queues, and so on.

These algorithms are thus really sets of algorithms (for example, the
set of RR algorithms for all time slices, and so on). One set of algorithms
may include another (for example, the FCFS algorithm is the RR algorithm
with an infinite time quantum). What (if any) relation holds between the
following pairs of algorithm sets?

a. Priority and SJF

b. Multilevel feedback queues and FCFS

c. Priority and FCFS

d. RR and SJF

Answer:

a. The shortest job has the highest priority.

b. The lowest level of MLFQ is FCFS.

c. FCFS gives the highest priority to the job having been in existence
the longest.

d. None.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Practice Exercises 17

6.6 Suppose that a scheduling algorithm (at the level of short-term CPU
scheduling) favors those processes that have used the least processor
time in the recent past. Why will this algorithm favor I/O-bound
programs and yet not permanently starve CPU-bound programs?
Answer:
It will favor the I/O-bound programs because of the relatively short CPU
burst request by them; however, the CPU-bound programs will not starve
because the I/O-bound programs will relinquish the CPU relatively often
to do their I/O.

6.7 Distinguish between PCS and SCS scheduling.
Answer:
PCS scheduling is done local to the process. It is how the thread library
schedules threads onto available LWPs. SCS scheduling is the situation
where the operating system schedules kernel threads. On systems using
either many-to-one or many-to-many, the two scheduling models are
fundamentally different. On systems using one-to-one, PCS and SCS are
the same.

6.8 Assume that an operating system maps user-level threads to the kernel
using the many-to-many model and that the mapping is done through
the use of LWPs. Furthermore, the system allows program developers to
create real-time threads. Is it necessary to bind a real-time thread to an
LWP?
Answer:
Yes, otherwise a user thread may have to compete for an available LWP
prior to being actually scheduled. By binding the user thread to an LWP,
there is no latency while waiting for an available LWP; the real-time user
thread can be scheduled immediately.

6.9 The traditional UNIX scheduler enforces an inverse relationship between
priority numbers and priorities: the higher the number, the lower the
priority. The scheduler recalculates process priorities once per second
using the following function:

Priority = (recent CPU usage / 2) + base

where base = 60 and recent CPU usage refers to a value indicating how
often a process has used the CPU since priorities were last recalculated.

Assume that recent CPU usage for process P1 is 40, for process P2 is 18,
and for process P3 is 10. What will be the new priorities for these three
processes when priorities are recalculated? Based on this information,
does the traditional UNIX scheduler raise or lower the relative priority
of a CPU-bound process?
Answer:
The priorities assigned to the processes are 80, 69, and 65 respectively.
The scheduler lowers the relative priority of CPU-bound processes.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

7C H A P T E R

Deadlocks

Practice Exercises

7.1 List three examples of deadlocks that are not related to a computer-
system environment.
Answer:

• Two cars crossing a single-lane bridge from opposite directions.

• A person going down a ladder while another person is climbing up
the ladder.

• Two trains traveling toward each other on the same track.

7.2 Suppose that a system is in an unsafe state. Show that it is possible for
the processes to complete their execution without entering a deadlock
state.
Answer:
An unsafe state may not necessarily lead to deadlock, it just means that
we cannot guarantee that deadlock will not occur. Thus, it is possible
that a system in an unsafe state may still allow all processes to complete
without deadlock occurring. Consider the situation where a system has
12 resources allocated among processes P0, P1, and P2. The resources are
allocated according to the following policy:

Max Current Need
P0 10 5 5
P1 4 2 2
P2 9 3 6

Currently there are two resources available. This system is in an
unsafe state as process P1 could complete, thereby freeing a total of
four resources. But we cannot guarantee that processes P0 and P2 can
complete. However, it is possible that a process may release resources
before requesting any further. For example, process P2 could release a
resource, thereby increasing the total number of resources to five. This

19

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

20 Chapter 7 Deadlocks

allows process P0 to complete, which would free a total of nine resources,
thereby allowing process P2 to complete as well.

7.3 Consider the following snapshot of a system:

Allocation Max Available
A B C D A B C D A B C D

P0 0 0 1 2 0 0 1 2 1 5 2 0
P1 1 0 0 0 1 7 5 0
P2 1 3 5 4 2 3 5 6
P3 0 6 3 2 0 6 5 2
P4 0 0 1 4 0 6 5 6

Answer the following questions using the banker’s algorithm:

a. What is the content of the matrix Need?

b. Is the system in a safe state?

c. If a request from process P1 arrives for (0,4,2,0), can the request be
granted immediately?

Answer:
a. The values of Need for processes P0 through P4 respectively are (0,

0, 0, 0), (0, 7, 5, 0), (1, 0, 0, 2), (0, 0, 2, 0), and (0, 6, 4, 2).

b. The system is in a safe state? Yes. With Available being equal to
(1, 5, 2, 0), either process P0 or P3 could run. Once process P3 runs,
it releases its resources, which allow all other existing processes to
run.

c. The request can be granted immediately? This results in the value
of Available being (1, 1, 0, 0). One ordering of processes that can
finish is P0, P2, P3, P1, and P4.

7.4 A possible method for preventing deadlocks is to have a single, higher-
order resource that must be requested before any other resource. For
example, if multiple threads attempt to access the synchronization
objects A · · · E , deadlock is possible. (Such synchronization objects may
include mutexes, semaphores, condition variables, and the like.) We can
prevent the deadlock by adding a sixth object F . Whenever a thread
wants to acquire the synchronization lock for any object A · · · E , it must
first acquire the lock for object F . This solution is known as containment:
the locks for objects A · · · E are contained within the lock for object F .
Compare this scheme with the circular-wait scheme of Section 7.4.4.
Answer:
This is probably not a good solution because it yields too large a scope.
It is better to define a locking policy with as narrow a scope as possible.

7.5 Prove that the safety algorithm presented in Section 7.5.3 requires an
order of m × n2 operations.
Answer:
Figure 7.1 provides Java code that implement the safety algorithm of
the banker’s algorithm (the complete implementation of the banker’s
algorithm is available with the source code download).

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Practice Exercises 21

for (int i = 0; i < n; i++) {
// first find a thread that can finish

for (int j = 0; j < n; j++) {
if (!finish[j]) {

boolean temp = true;

for (int k = 0; k < m; k++) {
if (need[j][k] > work[k])

temp = false;

}

if (temp) { // if this thread can finish

finish[j] = true;

for (int x = 0; x < m; x++)

work[x] += work[j][x];

}
}

}
}

Figure 7.1 Banker’s algorithm safety algorithm.

As can be seen, the nested outer loops—both of which loop through n
times—provide the n2 performance. Within these outer loops are two
sequential inner loops which loop m times. The big-oh of this algorithm
is therefore O(m × n2).

7.6 Consider a computer system that runs 5,000 jobs per month with no
deadlock-prevention or deadlock-avoidance scheme. Deadlocks occur
about twice per month, and the operator must terminate and rerun about
10 jobs per deadlock. Each job is worth about $2 (in CPU time), and the
jobs terminated tend to be about half-done when they are aborted.

A systems programmer has estimated that a deadlock-avoidance
algorithm (like the banker’s algorithm) could be installed in the system
with an increase in the average execution time per job of about 10 percent.
Since the machine currently has 30-percent idle time, all 5,000 jobs per
month could still be run, although turnaround time would increase by
about 20 percent on average.

a. What are the arguments for installing the deadlock-avoidance
algorithm?

b. What are the arguments against installing the deadlock-avoidance
algorithm?

Answer:
An argument for installing deadlock avoidance in the system is that
we could ensure deadlock would never occur. In addition, despite the
increase in turnaround time, all 5,000 jobs could still run.
An argument against installing deadlock avoidance software is that
deadlocks occur infrequently and they cost little when they do occur.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

22 Chapter 7 Deadlocks

7.7 Can a system detect that some of its processes are starving? If you answer
“yes,” explain how it can. If you answer “no,” explain how the system
can deal with the starvation problem.
Answer:
Starvation is a difficult topic to define as it may mean different things
for different systems. For the purposes of this question, we will define
starvation as the situation whereby a process must wait beyond a
reasonable period of time—perhaps indefinitely—before receiving a
requested resource. One way of detecting starvation would be to first
identify a period of time—T —that is considered unreasonable. When a
process requests a resource, a timer is started. If the elapsed time exceeds
T , then the process is considered to be starved.
One strategy for dealing with starvation would be to adopt a policy
where resources are assigned only to the process that has been waiting
the longest. For example, if process Pa has been waiting longer for
resource X than process Pb , the request from process Pb would be
deferred until process Pa ’s request has been satisfied.
Another strategy would be less strict than what was just mentioned. In
this scenario, a resource might be granted to a process that has waited less
than another process, providing that the other process is not starving.
However, if another process is considered to be starving, its request
would be satisfied first.

7.8 Consider the following resource-allocation policy. Requests for and
releases of resources are allowed at any time. If a request for resources
cannot be satisfied because the resources are not available, then we check
any processes that are blocked waiting for resources. If a blocked process
has the desired resources, then these resources are taken away from it
and are given to the requesting process. The vector of resources for which
the blocked process is waiting is increased to include the resources that
were taken away.

For example, consider a system with three resource types and the
vector Available initialized to (4,2,2). If process P0 asks for (2,2,1), it gets
them. If P1 asks for (1,0,1), it gets them. Then, if P0 asks for (0,0,1), it
is blocked (resource not available). If P2 now asks for (2,0,0), it gets the
available one (1,0,0) and one that was allocated to P0 (since P0 is blocked).
P0’s Allocation vector goes down to (1,2,1), and its Need vector goes up
to (1,0,1).

a. Can deadlock occur? If you answer “yes,” give an example. If you
answer “no,” specify which necessary condition cannot occur.

b. Can indefinite blocking occur? Explain your answer.

Answer:

a. Deadlock cannot occur because preemption exists.

b. Yes. A process may never acquire all the resources it needs if they
are continuously preempted by a series of requests such as those
of process C.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Practice Exercises 23

7.9 Suppose that you have coded the deadlock-avoidance safety algorithm
and now have been asked to implement the deadlock-detection algo-
rithm. Can you do so by simply using the safety algorithm code and
redefining Max[i] = Waiting[i] + Allocation[i], where Waiting[i] is a
vector specifying the resources for which process i is waiting and
Allocation[i] is as defined in Section 7.5? Explain your answer.
Answer:
Yes. The Max vector represents the maximum request a process may
make. When calculating the safety algorithm we use the Need matrix,
which represents Max — Allocation. Another way to think of this is Max
= Need + Allocation. According to the question, the Waiting matrix fulfills
a role similar to the Need matrix, therefore Max = Waiting + Allocation.

7.10 Is it possible to have a deadlock involving only one single-threaded
process? Explain your answer.
Answer:
No. This follows directly from the hold-and-wait condition.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

8C H A P T E R

Main Memory

Practice Exercises

8.1 Name two differences between logical and physical addresses.
Answer:
A logical address does not refer to an actual existing address; rather,
it refers to an abstract address in an abstract address space. Contrast
this with a physical address that refers to an actual physical address in
memory. A logical address is generated by the CPU and is translated into
a physical address by the memory management unit(MMU). Therefore,
physical addresses are generated by the MMU.

8.2 Consider a system in which a program can be separated into two
parts: code and data. The CPU knows whether it wants an instruction
(instruction fetch) or data (data fetch or store). Therefore, two base–
limit register pairs are provided: one for instructions and one for data.
The instruction base–limit register pair is automatically read-only, so
programs can be shared among different users. Discuss the advantages
and disadvantages of this scheme.
Answer:
The major advantage of this scheme is that it is an effective mechanism
for code and data sharing. For example, only one copy of an editor or
a compiler needs to be kept in memory, and this code can be shared
by all processes needing access to the editor or compiler code. Another
advantage is protection of code against erroneous modification. The
only disadvantage is that the code and data must be separated, which is
usually adhered to in a compiler-generated code.

8.3 Why are page sizes always powers of 2?
Answer:
Recall that paging is implemented by breaking up an address into a page
and offset number. It is most efficient to break the address into X page
bits and Y offset bits, rather than perform arithmetic on the address
to calculate the page number and offset. Because each bit position
represents a power of 2, splitting an address between bits results in
a page size that is a power of 2.

25

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

26 Chapter 8 Main Memory

8.4 Consider a logical address space of 64 pages of 1024 words each, mapped
onto a physical memory of 32 frames.

a. How many bits are there in the logical address?

b. How many bits are there in the physical address?

Answer:

a. Logical address: 16 bits

b. Physical address: 15 bits

8.5 What is the effect of allowing two entries in a page table to point to the
same page frame in memory? Explain how this effect could be used to
decrease the amount of time needed to copy a large amount of memory
from one place to another. What effect would updating some byte on the
one page have on the other page?
Answer:
By allowing two entries in a page table to point to the same page frame
in memory, users can share code and data. If the code is reentrant, much
memory space can be saved through the shared use of large programs
such as text editors, compilers, and database systems. “Copying” large
amounts of memory could be effected by having different page tables
point to the same memory location.

However, sharing of nonreentrant code or data means that any user
having access to the code can modify it and these modifications would
be reflected in the other user’s “copy.”

8.6 Describe a mechanism by which one segment could belong to the address
space of two different processes.
Answer:
Since segment tables are a collection of base–limit registers, segments
can be shared when entries in the segment table of two different jobs
point to the same physical location. The two segment tables must have
identical base pointers, and the shared segment number must be the
same in the two processes.

8.7 Sharing segments among processes without requiring that they have the
same segment number is possible in a dynamically linked segmentation
system.

a. Define a system that allows static linking and sharing of segments
without requiring that the segment numbers be the same.

b. Describe a paging scheme that allows pages to be shared without
requiring that the page numbers be the same.

Answer:
Both of these problems reduce to a program being able to reference
both its own code and its data without knowing the segment or page
number associated with the address. MULTICS solved this problem by
associating four registers with each process. One register had the address
of the current program segment, another had a base address for the stack,
another had a base address for the global data, and so on. The idea is

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Practice Exercises 27

that all references have to be indirect through a register that maps to
the current segment or page number. By changing these registers, the
same code can execute for different processes without the same page or
segment numbers.

8.8 In the IBM/370, memory protection is provided through the use of keys.
A key is a 4-bit quantity. Each 2K block of memory has a key (the storage
key) associated with it. The CPU also has a key (the protection key)
associated with it. A store operation is allowed only if both keys are
equal, or if either is zero. Which of the following memory-management
schemes could be used successfully with this hardware?

a. Bare machine

b. Single-user system

c. Multiprogramming with a fixed number of processes

d. Multiprogramming with a variable number of processes

e. Paging

f. Segmentation

Answer:

a. Protection not necessary, set system key to 0.

b. Set system key to 0 when in supervisor mode.

c. Region sizes must be fixed in increments of 2k bytes, allocate key
with memory blocks.

d. Same as above.

e. Frame sizes must be in increments of 2k bytes, allocate key with
pages.

f. Segment sizes must be in increments of 2k bytes, allocate key with
segments.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

9C H A P T E R

Virtual
Memory

Practice Exercises

9.1 Under what circumstances do page faults occur? Describe the actions
taken by the operating system when a page fault occurs.
Answer:
A page fault occurs when an access to a page that has not been
brought into main memory takes place. The operating system verifies
the memory access, aborting the program if it is invalid. If it is valid, a
free frame is located and I/O is requested to read the needed page into
the free frame. Upon completion of I/O, the process table and page table
are updated and the instruction is restarted.

9.2 Assume that you have a page-reference string for a process with m
frames (initially all empty). The page-reference string has length p;
n distinct page numbers occur in it. Answer these questions for any
page-replacement algorithms:

a. What is a lower bound on the number of page faults?

b. What is an upper bound on the number of page faults?

Answer:

a. n

b. p

9.3 Consider the page table shown in Figure 9.30 for a system with 12-bit
virtual and physical addresses and with 256-byte pages. The list of free
page frames is D, E , F (that is, D is at the head of the list, E is second,
and F is last).

Convert the following virtual addresses to their equivalent physical
addresses in hexadecimal. All numbers are given in hexadecimal. (A
dash for a page frame indicates that the page is not in memory.)

• 9EF

• 111

29

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

30 Chapter 9 Virtual Memory

• 700

• 0FF

Answer:

• 9E F - 0E F

• 111 - 211

• 700 - D00

• 0F F - E F F

9.4 Consider the following page-replacement algorithms. Rank these algo-
rithms on a five-point scale from “bad” to “perfect” according to their
page-fault rate. Separate those algorithms that suffer from Belady’s
anomaly from those that do not.

a. LRU replacement

b. FIFO replacement

c. Optimal replacement

d. Second-chance replacement

Answer:

Rank Algorithm Suffer from Belady’s anomaly
1 Optimal no
2 LRU no
3 Second-chance yes
4 FIFO yes

9.5 Discuss the hardware support required to support demand paging.
Answer:
For every memory-access operation, the page table needs to be consulted
to check whether the corresponding page is resident or not and whether
the program has read or write privileges for accessing the page. These
checks have to be performed in hardware. A TLB could serve as a cache
and improve the performance of the lookup operation.

9.6 Consider the two-dimensional array A:

int A[][] = new int[100][100];

where A[0][0] is at location 200 in a paged memory system with pages
of size 200. A small process that manipulates the matrix resides in page
0 (locations 0 to 199). Thus, every instruction fetch will be from page 0.

For three page frames, how many page faults are generated by
the following array-initialization loops, using LRU replacement and
assuming that page frame 1 contains the process and the other two
are initially empty?

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Practice Exercises 31

a. for (int j = 0; j < 100; j++)
for (int i = 0; i < 100; i++)

A[i][j] = 0;

b. for (int i = 0; i < 100; i++)
for (int j = 0; j < 100; j++)

A[i][j] = 0;

Answer:

a. 5,000

b. 50

9.7 Consider the following page reference string:

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

How many page faults would occur for the following replacement
algorithms, assuming one, two, three, four, five, six, or seven frames?
Remember all frames are initially empty, so your first unique pages will
all cost one fault each.

• LRU replacement

• FIFO replacement

• Optimal replacement

Answer:

Number of frames LRU FIFO Optimal
1 20 20 20
2 18 18 15
3 15 16 11
4 10 14 8
5 8 10 7
6 7 10 7
7 7 7 7

9.8 Suppose that you want to use a paging algorithm that requires a reference
bit (such as second-chance replacement or working-set model), but
the hardware does not provide one. Sketch how you could simulate a
reference bit even if one were not provided by the hardware, or explain
why it is not possible to do so. If it is possible, calculate what the cost
would be.
Answer:
You can use the valid/invalid bit supported in hardware to simulate the
reference bit. Initially set the bit to invalid. On first reference a trap to the
operating system is generated. The operating system will set a software
bit to 1 and reset the valid/invalid bit to valid.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

32 Chapter 9 Virtual Memory

9.9 You have devised a new page-replacement algorithm that you think may
be optimal. In some contorted test cases, Belady’s anomaly occurs. Is the
new algorithm optimal? Explain your answer.
Answer:
No. An optimal algorithm will not suffer from Belady’s anomaly because
—by definition—an optimal algorithm replaces the page that will not
be used for the longest time. Belady’s anomaly occurs when a page-
replacement algorithm evicts a page that will be needed in the immediate
future. An optimal algorithm would not have selected such a page.

9.10 Segmentation is similar to paging but uses variable-sized “pages.” Define
two segment-replacement algorithms based on FIFO and LRU page-
replacement schemes. Remember that since segments are not the same
size, the segment that is chosen to be replaced may not be big enough
to leave enough consecutive locations for the needed segment. Consider
strategies for systems where segments cannot be relocated, and those
for systems where they can.
Answer:

a. FIFO. Find the first segment large enough to accommodate the
incoming segment. If relocation is not possible and no one segment
is large enough, select a combination of segments whose memories
are contiguous, which are “closest to the first of the list” and
which can accommodate the new segment. If relocation is possible,
rearrange the memory so that the first N segments large enough for
the incoming segment are contiguous in memory. Add any leftover
space to the free-space list in both cases.

b. LRU. Select the segment that has not been used for the longest
period of time and that is large enough, adding any leftover space
to the free space list. If no one segment is large enough, select
a combination of the “oldest” segments that are contiguous in
memory (if relocation is not available) and that are large enough.
If relocation is available, rearrange the oldest N segments to be
contiguous in memory and replace those with the new segment.

9.11 Consider a demand-paged computer system where the degree of mul-
tiprogramming is currently fixed at four. The system was recently mea-
sured to determine utilization of CPU and the paging disk. The results
are one of the following alternatives. For each case, what is happening?
Can the degree of multiprogramming be increased to increase the CPU
utilization? Is the paging helping?

a. CPU utilization 13 percent; disk utilization 97 percent

b. CPU utilization 87 percent; disk utilization 3 percent

c. CPU utilization 13 percent; disk utilization 3 percent

Answer:

a. Thrashing is occurring.

b. CPU utilization is sufficiently high to leave things alone, and
increase degree of multiprogramming.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Practice Exercises 33

c. Increase the degree of multiprogramming.

9.12 We have an operating system for a machine that uses base and limit
registers, but we have modified the machine to provide a page table.
Can the page tables be set up to simulate base and limit registers? How
can they be, or why can they not be?
Answer:
The page table can be set up to simulate base and limit registers provided
that the memory is allocated in fixed-size segments. In this way, the base
of a segment can be entered into the page table and the valid/invalid bit
used to indicate that portion of the segment as resident in the memory.
There will be some problem with internal fragmentation.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

10C H A P T E RMass
Storage
Structure

Practice Exercises

10.1 Is disk scheduling, other than FCFS scheduling, useful in a single-user
environment? Explain your answer.
Answer:
In a single-user environment, the I/O queue usually is empty. Requests
generally arrive from a single process for one block or for a sequence of
consecutive blocks. In these cases, FCFS is an economical method of disk
scheduling. But LOOK is nearly as easy to program and will give much
better performance when multiple processes are performing concurrent
I/O, such as when a Web browser retrieves data in the background while
the operating system is paging and another application is active in the
foreground.

10.2 Explain why SSTF scheduling tends to favor middle cylinders over the
innermost and outermost cylinders.
Answer:
The center of the disk is the location having the smallest average
distance to all other tracks. Thus the disk head tends to move away
from the edges of the disk. Here is another way to think of it. The
current location of the head divides the cylinders into two groups. If
the head is not in the center of the disk and a new request arrives, the
new request is more likely to be in the group that includes the center
of the disk; thus, the head is more likely to move in that direction.

10.3 Why is rotational latency usually not considered in disk scheduling?
How would you modify SSTF, SCAN, and C-SCAN to include latency
optimization?
Answer:
Most disks do not export their rotational position information to the
host. Even if they did, the time for this information to reach the
scheduler would be subject to imprecision and the time consumed by
the scheduler is variable, so the rotational position information would
become incorrect. Further, the disk requests are usually given in terms

35

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

36 Chapter 10 Mass-Storage Structure

of logical block numbers, and the mapping between logical blocks and
physical locations is very complex.

10.4 Why is it important to balance file system I/O among the disks and
controllers on a system in a multitasking environment?
Answer:
A system can perform only at the speed of its slowest bottleneck. Disks
or disk controllers are frequently the bottleneck in modern systems as
their individual performance cannot keep up with that of the CPU and
system bus. By balancing I/O among disks and controllers, neither an
individual disk nor a controller is overwhelmed, so that bottleneck is
avoided.

10.5 What are the tradeoffs involved in rereading code pages from the file
system versus using swap space to store them?
Answer:
If code pages are stored in swap space, they can be transferred more
quickly to main memory (because swap space allocation is tuned for
faster performance than general file system allocation). Using swap
space can require startup time if the pages are copied there at process
invocation rather than just being paged out to swap space on demand.
Also, more swap space must be allocated if it is used for both code and
data pages.

10.6 Is there any way to implement truly stable storage? Explain your
answer.
Answer:
Truly stable storage would never lose data. The fundamental technique
for stable storage is to maintain multiple copies of the data, so that if
one copy is destroyed, some other copy is still available for use. But for
any scheme, we can imagine a large enough disaster that all copies are
destroyed.

10.7 It is sometimes said that tape is a sequential-access medium, whereas
a magnetic disk is a random-access medium. In fact, the suitability
of a storage device for random access depends on the transfer size.
The term streaming transfer rate denotes the rate for a data transfer
that is underway, excluding the effect of access latency. By contrast, the
effective transfer rate is the ratio of total bytes per total seconds, including
overhead time such as access latency.

Suppose that, in a computer, the level-2 cache has an access latency
of 8 nanoseconds and a streaming transfer rate of 800 megabytes per
second, the main memory has an access latency of 60 nanoseconds and
a streaming transfer rate of 80 megabytes per second, the magnetic disk
has an access latency of 15 milliseconds and a streaming transfer rate
of 5 megabytes per second, and a tape drive has an access latency of 60
seconds and a streaming transfer rate of 2 megabytes per seconds.

a. Random access causes the effective transfer rate of a device to
decrease, because no data are transferred during the access time.
For the disk described, what is the effective transfer rate if an

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Practice Exercises 37

average access is followed by a streaming transfer of (1) 512 bytes,
(2) 8 kilobytes, (3) 1 megabyte, and (4) 16 megabytes?

b. The utilization of a device is the ratio of effective transfer rate to
streaming transfer rate. Calculate the utilization of the disk drive
for each of the four transfer sizes given in part a.

c. Suppose that a utilization of 25 percent (or higher) is considered
acceptable. Using the performance figures given, compute the
smallest transfer size for disk that gives acceptable utilization.

d. Complete the following sentence: A disk is a random-access
device for transfers larger than bytes and is a sequential-
access device for smaller transfers.

e. Compute the minimum transfer sizes that give acceptable utiliza-
tion for cache, memory, and tape.

f. When is a tape a random-access device, and when is it a
sequential-access device?

Answer:

a. For 512 bytes, the effective transfer rate is calculated as follows.
ETR = transfer size/transfer time.
If X is transfer size, then transfer time is ((X/STR) + latency).
Transfer time is 15ms + (512B/5MB per second) = 15.0097ms.
Effective transfer rate is therefore 512B/15.0097ms = 33.12 KB/sec.
ETR for 8KB = .47MB/sec.
ETR for 1MB = 4.65MB/sec.
ETR for 16MB = 4.98MB/sec.

b. Utilization of the device for 512B = 33.12 KB/sec / 5MB/sec =
.0064 = .64
For 8KB = 9.4%.
For 1MB = 93%.
For 16MB = 99.6%.

c. Calculate .25 = ETR/STR, solving for transfer size X.
STR = 5MB, so 1.25MB/S = ETR.
1.25MB/S * ((X/5) + .015) = X.
.25X + .01875 = X.
X = .025MB.

d. A disk is a random-access device for transfers larger than K bytes
(where K > disk block size), and is a sequential-access device for
smaller transfers.

e. Calculate minimum transfer size for acceptable utilization of
cache memory:
STR = 800MB, ETR = 200, latency = 8 * 10−9.
200 (XMB/800 + 8 X 10−9) = XMB.
.25XMB + 1600 * 10−9 = XMB.
X = 2.24 bytes.
Calculate for memory:

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

38 Chapter 10 Mass-Storage Structure

STR = 80MB, ETR = 20, L = 60 * 10−9.
20 (XMB/80 + 60 * 10−9) = XMB.
.25XMB + 1200 * 10−9 = XMB.
X = 1.68 bytes.
Calculate for tape:
STR = 2MB, ETR = .5, L = 60s.
.5 (XMB/2 + 60) = XMB.
.25XMB + 30 = XMB.
X = 40MB.

f. It depends upon how it is being used. Assume we are using
the tape to restore a backup. In this instance, the tape acts as a
sequential-access device where we are sequentially reading the
contents of the tape. As another example, assume we are using
the tape to access a variety of records stored on the tape. In this
instance, access to the tape is arbitrary and hence considered
random.

10.8 Could a RAID level 1 organization achieve better performance for read
requests than a RAID level 0 organization (with nonredundant striping
of data)? If so, how?
Answer:
Yes, a RAID Level 1 organization could achieve better performance for
read requests. When a read operation is performed, a RAID Level 1
system can decide which of the two copies of the block should be
accessed to satisfy the request. This choice could be based on the current
location of the disk head and could therefore result in performance
optimizations by choosing a disk head that is closer to the target data.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

