47. Let’s trace the execution step-by-step -

void myFunc() {
print("A");
myFuture().then((_) => print("C"));
print("B");

}

We don’t see what myFuture() does, but since it's a Future, we know it runs
asynchronously — it won'’t block the next statements.

Execution order:

1. print("A"); — runs immediately — A printed first.

2. myFuture().then((_) => print("C")); — schedules a future callback
(print("C")) to run later, after myFuture () completes.

3. print("B"); — runs next — B printed second.

4. When myFuture() completes, the . then() callback executes — C printed last.

{4 Final output (visual result):

A
B
C
So:
e “A”and “B” appear immediately (in order),
e “C” appears later, after the asynchronous task finishes.
46

.Why doesn’t the number on screen update? b) Show the two key changes to fix it (class +
state update line)
class MyCounter extends StatelessWidget {
int counter = 0;
@override
Widget build(BuildContext context) {
return ElevatedButton(

AVAILABLE AT:

http://www.onebyzeroedu.com

onPressed: () { counter++; print(counter); },
child: Text('$counter'),

);
}

}

Ans:Good question — the reason the number on screen doesn’t update is because:

7] StatelessWidget cannot rebuild itself when data changes.
_I The counter variable is updated, but the Ul is never told to rebuild.

“. Two Key Changes to Fix It:
(1) Change the class to StatefulWidget

A StatefulWidget allows Flutter to rebuild the widget when the state changes.
class MyCounter extends StatefulWidget {

@override
_MyCounterState createState() => _MyCounterState();

}

2)Call setState() to update the Ul

Wrap your counter increment inside setState() so the framework knows to rebuild the
widget.

class _MyCounterState extends State<MyCounter> {
int counter = 0;

@override
Widget build(BuildContext context) {
return ElevatedButton(
onPressed: () {
setState(() { counter++; }); // [Y4 rebuilds the Ul
print(counter);
2
child: Text("$counter’),
);
}
}

AVAILABLE AT:

http://www.onebyzeroedu.com

"4 Summary:

Problem Fix
Using StatelessWidget Change to StatefulWidget
Direct variable change Wrap in setState(() {
(counter++) counter++; })

These two changes make the number update on screen properly.

45. In Flutter, a Platform Channel is the communication bridge between Dart (Flutter
code) and the native platform code — that is, Android (Kotlin/Java) and iOS
(Swift/Objective-C).

“Z In simple words:
A Platform Channel lets your Flutter app talk to the device’s native APls — for example:

e Accessing the camera, Bluetooth, battery info, or sensors

e Using native libraries or SDKs not available in Flutter

J- How It Works (Conceptually)
Flutter and the native side communicate using asynchronous message passing.

1. Flutter side (Dart) sends a message through a channel.

2. Native side (Android/iOS) receives the message and performs the requested
action.

3. Native side sends a response back to Flutter.

%/ Channel Types

Type Direction Description
MethodChannel Two-way Call a native function and get a result back
EventChannel Native — Flutter Stream of data from native (e.g., sensor

updates)

AVAILABLE AT:

http://www.onebyzeroedu.com

BasicMessageChann Both ways For sending simple string or binary messages
el

44 .Local vs Push notifications—one line each.

Local Notification: Triggered by the app itself on the device (no internet needed).
Push Notification: Sent from a remote server via the internet to the device (needs backend
or cloud service).

Local Notification: flutterLocalNotificationsPlugin.show(id, title, body,
details);

Push Notification: FirebaseMessaging.onMessage.listen((message) =>
showNotification(message));

43.Purpose: To let Flutter (Dart) communicate with native platform code (Android/iOS) for
accessing device features not available in Flutter.

Example Method Call:

final batteryLevel = await
MethodChannel('samples.flutter.dev/battery').invokeMethod('getBatteryLevel');

42.
Forms & validators: purpose + tiny validation example.

Purpose: To collect user input in Flutter and ensure it meets certain rules (like required
fields, email format, length).

Tiny Validation Example:

TextFormField(
validator: (value) => value!.isEmpty ? 'Cannot be empty' : null,

)

41.0ne thing DevTools helps inspect (e.g., memory/frames).

Flutter DevTools helps inspect widget tree layout and rebuilds.

40.
Two Flutter test types (name them).

AVAILABLE AT:

http://www.onebyzeroedu.com

1. Unit Test — tests individual functions, methods, or classes.

2. Widget Test — tests Ul widgets and their interaction.

39.0ne difference between debug and release builds.

Debug Build: Includes debugging info and asserts, slower, used during development.
Release Build: Optimized, no debugging info, used for production deployment.

38.Where to declare Android permissions: In the AndroidManifest.xml file.

When to request runtime permission: For dangerous permissions (e.g., camera,
location, storage) on Android 6.0+, request at runtime before accessing the feature.

37.benefit of the Repository Pattern. [2 mark] with eg

Benefit: Separates data access logic from business logic, making code cleaner,
reusable, and easier to test.

Example:
class UserRepository {

Future<User> getUser(int id) => ApiService().fetchUser(id);

Here, the Ul calls UserRepository.getUser () instead of directly calling ApiService.

36.0utline MVVM (Model/View/ViewModel) in one line each.

e Model: Manages app data and business logic.
e View: Displays the Ul and observes the ViewModel.

e ViewModel: Connects Model and View, exposing data and handling Ul logic.

AVAILABLE AT:

http://www.onebyzeroedu.com

35.Firebase Security Rules—purpose.

Purpose: To control read and write access to Firebase databases or storage, ensuring
only authorized users can access or modify data.

34 REST vs RPC—one core difference. with full form

REST (Representational State Transfer): Operates on resources using standard HTTP
methods (GET, POST, PUT, DELETE).

RPC (Remote Procedure Call): Calls specific functions or procedures on the server
directly.

33.0ne security consideration for local storage (prefs/SQLite).

Security Consideration: Data stored locally can be accessed by anyone with device
access, so sensitive data should be encrypted.

32.How to show Cupertino look in a Material app on iOS (high-level approach).

High-level Approach: Wrap your app or widgets in CupertinoApp or use Cupertino
widgets (like CupertinoButton, CupertinoNavigationBar) conditionally when
Platform.isIOS.

31.1dentify the null-aware ?. and ?? with 1-line examples.

e ?. (null-aware access): Access a member only if the object isn’t null.

int? len = myString?.length;

e ?7? (if-null operator): Provide a default value if the expression is null.

int value = myNullablelnt ?? 0O;

30.Dart dynamic vs Object (concise).

e dynamic: Type is checked at runtime, allows any operation, no static safety.

dynamic x = 5; x = "hello"; // OK

AVAILABLE AT:

http://www.onebyzeroedu.com

e Object: Base type of all objects, static type-safe, requires casting for specific
operations.

Object y = 5; // y.toString() works, y + 2 requires cast

29.Two Container decoration options (just name them)

1. color — sets the background color.

Container(color: Colors.blue)

2. BoxDecoration — allows gradient, border, shape, and shadow.

Container(decoration: BoxDecoration(borderRadius: BorderRadius.circular(8), color:
Colors.red))

28.Choose LayoutBuilder vs MediaQuery for widget-specific breakpoints—why?

Use LayoutBuilder for widget-specific breakpoints because it provides the exact
constraints of the parent widget, whereas MediaQuery only gives the whole screen
size.

27.Two responsiveness tactics besides MediaQuery.

1. LayoutBuilder: Adjusts widget layout based on parent constraints.

2. Flexible/Expanded: Makes widgets adapt proportionally within Row, Column, or
Flex.

26.Compare Get.to() with Navigator.push (one line).

Get.to(): Simplified navigation without BuildContext; Navigator.push: Standard Flutter
navigation requiring BuildContext.

AVAILABLE AT:

http://www.onebyzeroedu.com

Here’s a concise answer sheet for all your questions:

1. Trace layout with two Spacers and an Icon [2]
Row(
children: [
Spacer(),
Icon(lcons.star),

Spacer(),

1,

e Purpose: Spaces icon evenly using flexible empty space.

2. Purpose of dispose(); example resource [2]

e Purpose: Clean up resources to prevent memory leaks when a StatefulWidget is
removed.

e Example: TextEditingController, AnimationController,
StreamSubscription.

@override
void dispose() {
myController.dispose();

super.dispose();

AVAILABLE AT:

http://www.onebyzeroedu.com

3. Define a BLoC Event [1]

abstract class CounterEvent {}

class Increment extends CounterEvent {}

e Purpose: Represents an action that triggers a state change in BLoC.

4. Row with 1:2 space using Expanded [2]
Row(
children: [
Expanded(flex: 1, child: Container(color: Colors.red)),

Expanded(flex: 2, child: Container(color: Colors.blue)),

1,

5. Idempotent method that replaces a resource [1]

e Answer: PUT HTTP method

6. What does await do? Tiny demo [2]

e Answer: Pauses execution until a Future completes.

void fetchData() async {
var data = await Future.delayed(Duration(seconds: 1), () => "Hello");

print(data);

AVAILABLE AT:

http://www.onebyzeroedu.com

7. Dart List vs Map with micro-examples [2]

e List: Ordered collection of items accessed by index.

List<String> names = ['Ali", 'Sara'];

print(names[0]); // Al

e Map: Collection of key-value pairs accessed by key.

Map<String, int> scores = {'Ali": 90, 'Sara": 85};

print(scores['Sara'"); // 85

8. Data types for JSON {"id":101,"friends":["Ali",6 "Sara"]} [2]

e Whole JSON — Map<String, dynamic>

e "friends" — List<String>

9. Lifecycle method called once; typical use [2]

e Method: initState()

e Use: Initialize controllers, API calls, or subscriptions.

10. build() return type + role of BuildContext [2]

AVAILABLE AT:

http://www.onebyzeroedu.com

e Return type: Widget

e BuildContext: Provides location in widget tree for theme, inherited widgets, and
navigation.

11. Method to trigger rebuild + why inside callback [2]

e Method: setState(() { ... })

e Why: Wrapping state changes inside setState tells Flutter to rebuild the widget,
so the Ul reflects the updated data.

Example:
onPressed: () {
setState(() {

counter++;

s

12. FutureBuilder vs StreamBuilder: difference + scenario each [3]

Difference:

o FutureBuilder: Handles a single asynchronous result (Future).

o StreamBuilder: Handles continuous or multiple asynchronous values
(Stream).

e Scenario Example:
o FutureBuilder: Fetch user profile once from an API.

o StreamBuilder: Listen to live chat messages or real-time sensor data.

AVAILABLE AT:

http://www.onebyzeroedu.com

13. PUT vs PATCH (profile) [2]

e PUT: Replaces the entire resource (e.g., full user profile update).

e PATCH: Updates only specific fields of the resource (e.g., just the email or name).

14. Print order for A/B/C in:
void myFunc() {

print("A");

myFuture().then((_) => print("C"));

print("B");

e Order: A— B — C (because then is async)

15. RenderFlex/unbounded: cause + fixed snippet [3]

e Cause: Column/Row inside scrollable without constraints.

e Fix:

Expanded(child: ListView(...))

Cause: A Row or Column has unbounded space (e.g., inside a scrollable) and children try
to expand infinitely.

Fixed Snippet: Wrap the child with Expanded or constrain its size.

Column(

AVAILABLE AT:

http://www.onebyzeroedu.com

children: [
Expanded(
child: ListView(

children: [Text('ltem 1'), Text('ltem 2")],

16. Stateless counter: why not updating + two code changes [3]
e Why: StatelessWidget can’t rebuild; counter++ doesn’t trigger Ul update.
e Fix:

1. Change to StatefulWidget

2. Wrap incrementin setState(() { counter++; })

17. One tech advantage (Native) + one business advantage (Flutter) [2]

e Native: Full device API access, high performance.

e Flutter: Faster development & single codebase — lower cost.

18. Two ways for a Row child to fill remaining width [2]

Expanded: Fills all available space proportionally.

Expanded(child: Container(color: Colors.blue))

AVAILABLE AT:

http://www.onebyzeroedu.com

2. Flexible: Fills available space but can be limited with flex
and fit.

Flexible(flex: 1, child: Container(color: Colors.red))

19. async returns what? [2]*

e Answer: A Stream that emits multiple values over time.
async function returns a Future that completes with the function’s return value.

Example:
Future<String> fetchData() async {

return "Hello";

20. APl in build(): why repeats + correct lifecycle [3]

e Why: build() runs on every Ul rebuild — API called repeatedly.

e Correct: Call APl in initState() and store result in state.

21. HTTP 404 & 200 [1]

e 200: Success

e 404: Not Found

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

22. Firebase Auth purpose + one provider [2]

e Purpose: Authenticate users securely.

e Provider: Google Sign-In

23. await vs .then(): difference in readability/flow [1]

e await: Linear, easier to read

void fetchData() async {
String data = await Future.delayed(Duration(seconds: 1), () => "Hello");
print(data); // Prints after 1 second

}

then(): Chained, nested callbacks

Future.delayed(Duration(seconds: 1), () => "Hello").then((data) {
print(data); // Prints after 1 second

s

24. Two Animation widgets + classify [2]

e Implicit Animation Widget: AnimatedContainer — automatically
animates when properties change.

e Explicit Animation Widget: AnimatedBuilder — controlled via an
AnimationController for fine-grained animations.

25. One role of Drawer & one of AppBar beyond title [1]

e Drawer: Provides app-wide navigation

e AppBar: Holds actions, tabs, or search widgets

AVAILABLE AT:

http://www.onebyzeroedu.com

26. When prefer BottomNavigationBar over Drawer? [1]

e When main navigation has <5 top-level destinations for quick switching.

If you want, | can convert all of these into a super concise 1-page Flutter cheat sheet for
exam prep. Do you want me to do that?

AVAILABLE AT:

http://www.onebyzeroedu.com

