2019-20

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

(WAILABLE AT:

oot [Onebyzero Edu - Organized Learming, Smooth Carear

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

1.a)Khata

b)khata

c)khata
2.a)khata

)b) Lusagine, Mary is a model-based Al that builds and maintains an internal representation
of the world. And Greg, on the other hand, is a goal-based At that focuses on achieving
specific @bjectives
Describe the fundamental differences between Model-Based Mary and Goal-Based Greg in
lents of their operational strategies. How does each approach affect their decision-making
processes and adaptability to changes in their environment?

Ans:
e Model-Based Mary — Thinks before acting, predicts, and adapts via
her internal model.

e Goal-Based Greg — Acts toward a defined goal, focusing on outcomes
more than understanding the environment.

Model-based reflex agent

« Maintains internal state that keeps track of aspects of the
environment that cannot be currently observed

/_ =T - \

-~
N\ Sensors -=

\
State \

@owthe world evolves)—b What the world

is like now
What my actions do

|

JuswuoJiAug

CConditb n-action ru Ies_)_.. ggautldacd!obgolw
Agent Actuators -
0 N

How it works: Maintains an internal model of the world to handle partially

observable environments.
Example:
A vacuum cleaner robot:

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Remembers which rooms it has cleaned and where dirt may still remain.
Self-parking car: Keeps track of car position and obstacles.

Goal-based agent

» The agent uses goal information to select between
possible actions in the current state

a - D

™\ Sensors =

\

How the world evolves What the workl

is like now
Y
. What it will be like
What my actions do it | do action A

JusWUOJIAUT

- . What action |
should do now

Agnt Acluaiors -

A\ /

Goal-Based Agent
How it works: Chooses actions by considering future states and whether they
achieve a goal.
Example:
A GPS navigation system: Chooses the shortest path to the destination.
Chess Al: Selects moves that lead to checkmate.

AVAILABLE AT:

http://www.onebyzeroedu.com

Feature Model-Based Mary Goal-Based Greg

Knowledge Maintains internal model of Focuses on goal definitions
environment

Decision Predictions from model Goal satisfaction
Basis

Adaptabilit High (can re-plan when model Medium (depends on goal

Yy updates) flexibility)

Complexity Higher computationally Simpler and faster

Example Autonomous planning, Search and optimization

Use simulation problems

Planning Plans actions based on Plans actions based on goal
modeled state transitions. satisfaction.

C) Define Rational Agent Agent with example. Is vacuum cleaner agent
Rational? Why or why not? Explain with suitable reasons.

A Rational Agent is an Al agent that acts to achieve the best possible
outcome (or, when there is uncertainty, the best expected outcome) based
on its perception and knowledge of the environment.

Formally:

A rational agent chooses an action that maximizes its
performance measure, given the percept sequence and its built-in
knowledge.

*Performance measure (utility function):

An objective criterion for success of an agent's behavior
ExpectedUtility(action) = sum_outcomes Utility(outcome) * P(outcome)

AVAILABLE AT:

http://www.onebyzeroedu.com

Example of a Rational Agent:

Specifying the task environment

* Problem specification: Performance measure,
Environment, Actuators, Sensors (PEAS)

- Example: automated taxi driver
— Performance measure
» Safe, fast, legal, comfortable trip, maximize profits
— Environment
» Roads, other traffic, pedestrians, customers
— Actuators
» Steering wheel, accelerator, brake, signal, horn
— Sensors
+ Cameras, sonar, speedometer, GPS, odometer,

engine sensors, keyboard
Is the Vacuum Cleaner Agent Rational?

Yes, it can be rational — depending on its design and performance measure.

Back to vacuum-cleaner world

* Percepts:

A B
Location and status, 4 !
e.g., [A.Dirty]

. _ A oo oo
Actions: | 0«98@ 0980
Left, Right, Suck, NoOp

function Vacuum-Agent([location,status]) returns an action
+ [f status = Dirty then return Suck

+ else iflocation = A then return Right
+ else iflocation = B then return Left

* |Is this agent rational?
— Depends on performance measure, environment properties

AVAILABLE AT:

http://www.onebyzeroedu.com

Condition Explanation

Percepts The vacuum cleaner perceives whether the current square is
dirty or clean and where it is located.

Actions It can move Left, Right, or Suck (clean).

Performance Keep the room as clean as possible using minimal actions and
Measure time.

Rational If the vacuum cleaner sucks dirt when the square is dirty and
Behavior moves efficiently to find dirt when clean, it acts rationally.

When It’s Not Rational:
If the vacuum cleaner:

e Cleans already clean areas repeatedly, or

e Moves randomly without sensing dirt,
then it's not rational, since it fails to maximize cleanliness efficiently.

3.a) Defire in your own words the following term: state, state space, search
tree, search node. goal, action, transition model, and branching factor.

Term Definition
State A configuration of the problem
State Space The set of all possible states
Search Tree A tree structure representing the search process
Search Node A node in the search tree
Goal The state that the search process is trying to reach
Action A choice that can be made in a state

Transition Model | Describes the result of taking an action in a state

Branching Factor | The average number of successors that any node in the search tree has

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Term

State

State Space

Search Tree

Search
Node

Goal

Action

Transition
Model

Branching
Factor

Tic-Tac-Toe Example

The current layout of the Tic-Tac-Toe board (e.g., X in the
center, O in the top-left).

All possible board configurations that can occur during the
game (from empty board to full board).

The tree formed by all possible sequences of moves by X
and O starting from an empty board.

One specific board position in the search tree after a certain
number of moves.

The winning state where a player gets three in a row
(horizontal, vertical, or diagonal), or a draw if the board is full.

Placing an X or O in an empty cell on the board.

The rule showing how the board changes after a move (e.g.,
X places in an empty cell — that cell now contains X).

The number of possible moves from a state (e.g., at the start
9 possible moves, then 8, 7, etc.).

|
State Space Search

State Space
Search Initial State
el * T~
X
X X Artificial
-y g Intelligence
X|0 X X 0 %
1]
0

Subscribe to Mahesh Huddar Visit: vtupulse.com

AVAILABLE AT:

http://www.onebyzeroedu.com

b)What is Greedy Best First Search? Explain with an example the different
stages of Greedy Best First search

Greedy Best-First Search is a search algorithm that selects the next node
to explore based on which node appears to be closest to the goal,
according to a heuristic function h(n).

It is called “greedy” because it always tries to expand the node that looks
best at the moment, without considering the total cost so far.

Expand the node that has the lowest value of the heuristic function h(n).

Formula:

f(n)=h(n)Where:

® h(n) = heuristic estimate of the cost from node nnn to the goal.

e GBFS ignores the path cost g(n)); it only uses h(n)

Heuristic values h(n) (estimated straight-line distance to G):

AVAILABLE AT:

http://www.onebyzeroedu.com

h(n) 7 6 2 6 3 0
Ste Frontier (Nodes to Explore) Chosen Node Action /
p (Lowest h) Result
1 {S} S (h=7) Start from S
2 Expand S — {A(6), C(6), D(3)} D (h=3) Move to D
3 Expand D — {G(0)} + previous G (h=0) Goal found
nodes v
S—-D—G

Properties of greedy best-first search

Complete?
No — can get stuck in loops
Optimal?
No
» Time?
Worst case: O(b™)
Space?
Worst case: O(b™)

AVAILABLE AT:

http://www.onebyzeroedu.com

C)Explain iterative deepening search with example.

“2 What is Iterative Deepening Search (IDS)?

Iterative Deepening Search (IDS) is a search algorithm that combines the
advantages of Depth-First Search (DFS) and Breadth-First Search (BFS).

< It performs repeated depth-limited searches, increasing the limit each time

until the goal is found.

J- How It Works:

1. Start with depth limit = 0.
2. Perform a Depth-Limited Search (DLS) up to that depth.
3. If the goal is not found, increase the depth limit by 1 and repeat.

4. Continue until the goal is found.

Iterative deepening search

Use DFS as a subroutine

1. Check the root

2. Do a DFS searching for a path of length 1

3. Ifthereis no path of length 1, do a DFS searching
for a path of length 2

4, If thereis no path of length 2, do a DFS searching
for a path of length 3...

%* Why Use IDS?

AVAILABLE AT:

http://www.onebyzeroedu.com

e Like BFS, it will find the shallowest (optimal) goal.

e Like DFS, it uses low memory.

e |t avoids DFS’s infinite loop problem and BFS’s high memory usage.

& Example:
Consider this simple search tree:

A

/ 1\

BCD

JANVA

EFGH

Goal: Find node G

Limit =1 10)

« o

.. o e
_
L N N

Limit =2 N0)

AVAILABLE AT:

http://www.onebyzeroedu.com

Limit = 3 »@

_] Stages of Iterative Deepening Search

Iteratio Depth Nodes Visited (in Goal Found?
n Limit order)
1 0 A X No
2 1 A, B,CD X No
3 2 A,B,EFCDG Yes (found at
depth 2)
Result:

The algorithm finds G at depth 2, after exploring nodes gradually deeper each
time.

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Feature

Completeness

Optimality

Time
Complexity

Space
Complexity

Best Use

*Complete?
Yes

*Optimal?

Description

Yes, it always finds the goal if one exists.

Yes, if all step costs are equal.

O(bd) (like BFS)

O(bd) (like DFS, very memory efficient)

When the search space is large and depth of goal is
unknown.

Yes, if step cost =1

*Time?

(d+1)b° + d b* + (d-1)b* + ... + b? = O(b%)

*Space? O(bd)

In short:

Iterative Deepening Search repeatedly performs depth-limited

searches with increasing limits until the goal is found — combining
the low memory of DFS and the optimality of BFS.

AVAILABLE AT:

http://www.onebyzeroedu.com

4.a)Explain the process of Minimax without alpha-beta pruning and how it

determines the optimal move.

Minimax Algorithm (Without Alpha-Beta Pruning)

* Mini-max algorithm is a recursive or
backtracking algorithm which is used in
decision-making and game theory.

» It provides an optimal move for the player
assuming that opponent is also playing

optimally. X

** Mini-Max algorithm uses recursion to search
through the game-tree.

** Min-Max algorithm is mostly used for game
playing in AL Such as Chess, Checkers, tic-tac- [[
toe, go, and various tow-players game. This X | (O
Algorithm computes the minimax decision for
the current state.

Etc..

Purpose:
Minimax is used in two-player zero-sum games (like Tic-Tac-Toe or Chess) to
determine the optimal move by assuming that:

e MAX player tries to maximize the score.

e MIN player tries to minimize the score.

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Process:

1. Start from the leaf nodes (terminal states) and assign their utility values.
2. Move up the tree, alternating between MIN and MAX levels:

o At MAX nodes, choose the maximum value of child nodes.

o At MIN nodes, choose the minimum value of child nodes.
3. Continue until the root node is assigned a value.

4. The optimal move for MAX is the child node that gives this value.

Step-by-Step Minimax Computation
Step 1: Evaluate leaf nodes

e leavesare: 3,5,6,9,1,2,0, -1

Step 2: Compute MAX nodes (D, E, F, G)

e D=max(3,5)=5
e E=max(6,9)=9
e F=max(1,2)=2

e G=max(0,-1)=0

Step 3: Compute MIN nodes (B, C)

e B=min(D, E)=min(5,9)=5

e C=min(F, G)=min(2,0)=0

AVAILABLE AT:

http://www.onebyzeroedu.com

Step 4: Compute MAX node (A)

e A=max(B, C)=max(5,0)=5

Optimal Move
e MAX (A) should choose B, because it leads to the highest guaranteed
value (5).
Feature Value

OptimalMove A —> B
Optimal Value 5
Completeness Yes (tree is finite)

Time O(b*m) = O(23) = O(8) nodes in this
Complexity example

Space Complexity O(m) = O(3) (depth of tree)

LIMITATION OF THE MINIMAX ALGORITHM .

% The main drawback of the minimax algorithm is that it gets really slow
for complex games such as Chess, go, etc. This type of games has a huge
branching factor, and the player has lots of choices to decide.

AVAILABLE AT:

http://www.onebyzeroedu.com

b) How does alpha-beta pruning improve the efficiency of the Minimax
algorithm in evaluating game trees like the tree?

e
Alpha-beta pruning is a modified version of the minimax algorithm. 1\'12

an optimization technique for the minimax algorithm.

As we have seen in the minimax search algorithm that the number of
game states it has to examine are exponential in depth of the tree. Since

we cannot eliminate the exponent, but we can cut it to half.

Hence there is a technique by which without checking each node of the
game tree we can compute the correct minimax decision, and this

technique is called pruning.

This involves two threshold parameter Alpha and beta for future
expansion, so it is called alpha-beta pruning. It is also called as Alpha-Beta

Algorithm.

Alpha-beta pruning can be applied at any depth of a tree, and sometimes it

not only prune the tree leaves but also entire sub-tree.

Alpha (a) = best value that MAX can guarantee along the current path.
Beta (B) = best value that MIN can guarantee along the current path.

While evaluating a node:

e If current node value > 3 at a MIN node — stop exploring, because
MIN will avoid it.

e If current node value < a at a MAX node — stop exploring, because
MAX will avoid it.

This is called pruning because the branch is cut off early.

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

/

http://www.onebyzeroedu.com

Efficiency Gains

e Without pruning: Minimax evaluates all nodes — O(b”m) time
complexity.

e With alpha-beta pruning:

o Best-case time complexity: O(b*(m/2)) (almost square root of
nodes).

o Worst-case: still O(b*m) if the tree is poorly ordered.

e Space complexity remains the same: O(m).

Without pruning: all 8 leaves evaluated.
With alpha-beta pruning (assuming good move ordering):

1. StartatA—-B —> D
o D=max(3,5) =5
o aatA=5
2. Next E under B: max(6,9) =9
o MIN(B)=min(5,9)=5—>BatB=5
o a=5—if we explore C, some branches may be pruned because

MAX already has 5, so some values under C cannot improve the
outcome for MAX.

In effect, alpha-beta pruning avoids exploring F and part of G
because they cannot yield a better result than 5 for MAX.

1. Reduces computation: fewer nodes are evaluated.

2. Speeds up decision-making: especially important for deeper game
trees like Chess.

AVAILABLE AT:

http://www.onebyzeroedu.com

3. Does not affect optimality: the final Minimax value and move remain
the same.

§38

w™Q
o

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

C) Explain the terms 'max node" and "min node" in the Minimax algorithm
,how they are used to represent players in a game?

ajofXx
x 0
MAX mowve A
— ———
,—'-""'-''. -__"\—___‘_‘_‘_h-
==
._'_._,_'—'—""-'_F. _‘-\-"'"—\q.._____
010X agpofx Q|0 X
®IX]0 X 0 X Y
X XX X X
i o
MIN mave f\‘nt 4 Vi
f"' \ ’I_./ \ y, \\
& \. F \\ 4 N\
fdjo|x ojofx Q(0|X ojo| X ajo|x ojo0x
XIX|]0 XiX|0 X040 X Q X|gjo X 0
| X o X XX x| x x x x|0
MAX move |E ‘1 ‘1 [D . ‘ 1 ‘ 1
ojo({X ojl0|x Oj0|x 0(0[X gjo|x Q0J0|xX
X|x[o Xx|x]o xle]o x[xfe “xfolo X[x]x
D|X[X X|0|X | % Ox[x X|X|#% X|0[X
Fig. 5.11.4 Min playing (0]

“2 Max Node and Min Node in Minimax Algorithm

In the Minimax algorithm, nodes in the game tree represent game states,
and they are classified based on which player’s turn it is.

1 Max Node

e Represents: The turn of the MAX player (the player trying to maximize
the score).

e Purpose: Chooses the child node with the maximum value.

e Role in Game: MAX player is trying to select the move that gives the
best possible outcome.

e Example: In Tic-Tac-Toe, if X is the MAX player, nodes where X makes
a move are max nodes.

AVAILABLE AT:

http://www.onebyzeroedu.com

2)Min Node

e Represents: The turn of the MIN player (the opponent trying to
minimize MAX’s score).

e Purpose: Chooses the child node with the minimum value.

e Role in Game: MIN player tries to prevent MAX from winning or
minimize MAX’s advantage.

e Example: In Tic-Tac-Toe, if O is the MIN player, nodes where O makes
a move are min nodes.

=] How They Work in Minimax

1. Leaf nodes contain the utility value of that game state.
2. At MAX nodes, the algorithm picks the highest value from its children.
3. At MIN nodes, it picks the lowest value from its children.

4. This alternation continues up the tree until the root, which determines
the optimal move for MAX.

& Visual Example (Partial Tree)

A (MAX)
[\
B (MIN) C (MIN)

e A (MAX node): MAX chooses between B and C to maximize outcome.

e B, C (MIN nodes): MIN chooses moves that minimize MAX’s score.

AVAILABLE AT:

http://www.onebyzeroedu.com

In short:

Max nodes represent the moves of the player trying to maximize
the score, and Min nodes represent the opponent’s moves trying
to minimize that score. This alternation models the strategic
behavior of both players in a game tree.

5.a)Consider the graph shown below where the numbers on the links are link
costs and the numbers next to the states are heuristic estimates. Note that the
arcs are undirected. Let A be the start state and G be the goal state.

Simulate A search with a strictly expanded list on this graph. At each step,
show the path to the state of the node that's being expanded, the length of
that path, the total estimated cost of the path (actual heuristic), and the current
value of the expanded list (as a list of states).

Simulate A* search with a strict expanded list on this graph. At each step, show the path
to the state of the node that's being expanded, the length of that path, the total estimated
cost of the path (actual + heuristic), and the current value of the expanded list (as a list
of states). You are welcome to use scratch paper or the back of the exam pages to simulate
the search. However, please transcribe (only) the information requested into the table given
below.

Path to State Expanded | Length of Path | Total Estimated Cost | Expanded List
A 0 5 (A)

C-A 3 4 (CA)

B-A 1) (BCA)
H-C-A 5] 6 (HBCA)
G-H-C-A 6 G (GHBCA)

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Assumptions / rules used

Heuristic values read from the picture: (h(A)=5,; h(B)=4,; h(C)=1,;
h(H)=1,; h(G)=0).

Edge costs:A-B=1,A-C=3,B-C=1,B-G=9,C-G=5,C-H=2,H-G=1.
Standard A* tie-breaks arbitrarily (no tie occurred that affected order
here).

“Strictly expanded list” = closed list: once a node is expanded it is not
re-opened even if a cheaper path is later discovered.

Step-by-step A* expansions

I'll simulate A* on that graph and report, at each expansion, (1) the path to the node
being expanded, (2) the path length (g), (3) the total estimated cost (f=g+h) (they
called this the “total estimated cost”), and (4) the current expanded (closed) list.

Assumptions / rules used

Heuristic values read from the picture: (h(A)=5,; h(B)=4,; h(C)=1,; h(H)=1,;
h(G)=0).

Edge costs: (A!-!B=1,; A!-!C=3,; B!-!C=1,; B!-!G=9,; C!-!G=5,; C!-!H=2,;
H!-!G=1).

Standard A* tie-breaks arbitrarily (no tie occurred that affected order here).

“Strictly expanded list” = closed list: once a node is expanded it is not
re-opened even if a cheaper path is later discovered.

Step-by-step A* expansions

. Expand: A

o Path to node: A

AVAILABLE AT:

http://www.onebyzeroedu.com

° (g=0)
o (f=g+h=0+5=5)
o Expanded list (closed): [A]
2. (When expanding A we add neighbors B and C to open:
B: (g=1,; f=1+4=5).
C: (g=3,; =3+1=4).)
3. Expand: C (lowest (f=4))
o Pathtonode: A-C
o (g=3)
o (f=3+1=4)
o Expanded list: [A, C]

4. (Expanding C generates/updates:

o B via C: (g=3+1=4) but B already in open with (g=1) (keep the better
(g=1)).

o GviaC: (g=3+5=8,; f=8+0=8).

o H via C: (g=3+2=5,; f=5+1=6).)
5. Expand: B (next lowest (f=5))

o Pathtonode: A-B

o (g=1

o (f=1+4=5)

o Expanded list: [A, C, B]

AVAILABLE AT:

http://www.onebyzeroedu.com

6 . (Expanding B would give C via B a path (g=1+1=2), which is better than C's
current (g=3), but C is already in the closed list and we are following the strict
rule of not reopening expanded nodes — so we ignore that improvement. B
also gives G via B: (g=1+9=10) (worse than the existing G via C with (g=8)).)

7 . Expand: H (next lowest (f=6), path from C)

o Pathtonode:A-C-H
o (g=5)
o (f=5+1=6)

o Expanded list: [A, C, B, H]

8. (Expanding H updates G via H to (g=5+1=6,; {=6+0=0); this is better than the
previous G in open with (g=8), so G becomes (g=6,{=6).)

9. Expand: G (goal reached; lowest (f=6))
o Pathtonode:A-C-H-G
o (g=0)
o (f=6+0=06)

o Expanded list: [A, C, B, H, G]

Stop — goal expanded. The found path is A - C - H - G with cost (6).

Final result

e Returned path: A - C—->H—>G
e Path cost (g): 6

e Expanded (in expansion order): A, C, B, H, G

AVAILABLE AT:

http://www.onebyzeroedu.com

e D) is the heuristic given in Problem 5.a admissible? Explain.

Yes. The heuristic is admissible because it is less than or equal to the
actual shortest distance to the goal.

To determine if the heuristic is admissible, | need to check if it never
overestimates the actual cost to reach the goal from any node.

A heuristic h(n) is admissible if: h(n) < actual shortest path cost from nto G
for all nodes n.

Let me find the actual shortest paths from each node to G:
Actual shortest paths to G:

1. From A to G:

o PathA—-C —->H—->G,Cost:3+2+1=6
o h(A)=5<6 Vv
2. From B to G:

o Path-rB—-C—>H—->G,Cost:1+2+1=4
o h(B)=4<4v
3. From C to G:

o PathC—>H—->G,Cost:2+1=3
o h(C)=1=<3 /v
4. From H to G:

o Path:H — G, Cost: 1
o hH=1<1/
5. From G to G:

o Cost: 0
o h(G)=0=<0V

Yes, the heuristic is admissible. v

AVAILABLE AT:

http://www.onebyzeroedu.com

C) Is the heuristic given in Problem 2 consistent? Explain.

No, the heuristic is not consistent. There are two places in the graph where
consistency fails. One is between A and C where the drop in heuristic is 4, but
the path length is only 3. The other is between B and C where the drop in
heuristic is 3 but the path length is only 1.

To determine if the heuristic is consistent (also called monotone), I need to check if it
satisfies the triangle inequality for all edges.

A heuristic h(n) is consistent if: h(n) < ¢(n, n') + h(n') for every edge from node n to
neighbor n', where c(n, n') is the edge cost.

Let me check all edges in the graph:
Checking consistency for each edge:

1. Edge A — B (cost=1):

o h(A)<c(A,B) + h(B)?
o 5<1+4=5V
2. Edge A — C (cost =3):

o h(A)<c(A,C)+h(C)?
o 5<3+1=4
o 5<4is FALSE X

3. Edge B — C (cost=1):

o h(B)<c¢(B,C)+ h(C)?
o 4<1+1=2
o 4<2is FALSE X

4. Edge B — G (cost=9):

o h(B) <¢(B,G) + h(G)?
o 4<9+0=9 vV
5. Edge C — H (cost =2):

o h(C) < ¢(C,H) + h(H)?

o 1<24+41=3V
6. Edge C — G (cost=5):

AVAILABLE AT:

http://www.onebyzeroedu.com

o h(C) <c¢(C,G) +h(G)?
o 1<5+0=5V
7. Edge H— G (cost =1):

o h(H) <c(H,G) + h(G)?
o 1<1+0=1V
Conclusion:
No, the heuristic is NOT consistent. X
The heuristic violates the consistency condition on two edges:

e A— C:h(A)=5>4=c(A,C)+h(C)
e B— C:h(B)=4>2=¢(B,C)+h(C)

This means the heuristic is admissible but not consistent.

Let's run Uniform-Cost Search (UCS) on the drawn graph and find the optimal path
S —G.

Graph edges (interpreted from picture)
S—A:3, S-B:2, S-C:1

A-D:6, D-F:1, F-G:2

B-E:6, E-G:5

C-G:22

Start: (S) with cost 0.

Step 0 — initialize

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

e Open (frontier): S(0)

e Closed (expanded): []

Step 1 — expand S

e Expand: S
e Path tonode: S, (g=0)
e Add neighbors to open:
o AviaS: S—A cost (3) —» A(3)
o BviaS: S—B cost (2) — B(2)
o CviaS: S—C cost (1) — C(1)
e Open (sorted by cost): C(1), B(2), A(3)

e Closed: [S]

Step 2 — expand C (lowest cost)

e Expand: C
e Path: S—C, (g=1)
e Successors: G via C cost (1 +22 =23) — add G(23)

e Open:B(2), A(3), G(23)

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

e Closed: [S, C]

Step 3 — expand B

e Expand: B

Path: S—-B, (g=2)

Successors: E via B cost (2 + 6 = 8) — add E(8)

Open: A(3), E(8), G(23)

Closed: [S, C, B]

Step 4 — expand A

e Expand: A

e Path: S—A, (g=3)

e Successors: D via A cost (3 +6 =9) — add D(9)
e Open:E(8), D(9), G(23)

e Closed: [S, C, B, A]

Step 5 — expand E

e Expand: E

e Path: S-B—E , (g=8)

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

e Successors: G via E cost (8 +5=13).

o @G already in open at 23 — update to better cost 13.
e Open:D(9), G(13)

e Closed: [S, C, B, A, E]

Step 6 — expand D

e Expand: D

e Path: S—A-D, (g=9)

e Successors: F via D cost (9 + 1 =10) — add F(10)
e Open:F(10), G(13)

e Closed: [S, C, B, A, E, D]

Step 7 — expand F

e Expand: F
e Path: S-A-D-F , (g=10)
e Successors: G via F cost (10 +2 = 12).
o @G currently in open at 13 — update to better cost 12.
e Open: G(12)
e Closed: [S, C, B, A, E, D, F]

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Step 8 — expand G (goal)

e Expand: G
e Path: S-A-D-F-G, (g=12)

e Closed: [S, C, B, A, E, D, F, G]
Stop — goal expanded.

Result

e Optimal path found by UCS: S -~ A - D - F - G

e Total path cost: (12)

e Order of expansions (closed list): S, C, B, A, E, D, F, G

(UCS updated the best G path as better routes were discovered; the final best route is
S—A-D-F-G with cost 12.)

b) Write down the advantage of IDS over BFS and DFS. Also, shows times and space
complexity among them.

Here’s a clear comparison among IDS (Iterative Deepening Search), BFS
(Breadth-First Search), and DFS (Depth-First Search) — including their
advantages, time complexity, and space complexity:

{74 Advantage of IDS over BFS and DFS

Compared Advantage of IDS
With

AVAILABLE AT:

http://www.onebyzeroedu.com

Over BFS IDS uses much less memory. BFS stores all nodes at the current
level (which can be exponential in size), but IDS stores only one path
from the root to a leaf (like DFS).

Over DFS IDS is complete and optimal (for uniform step cost), whereas DFS
can get stuck in deep or infinite paths and may not find the shallowest
goal.

< In summary:
IDS combines the space efficiency of DFS with the completeness and optimality of
BFS.

J- Complexity Comparison
Let:

e b = branching factor (average number of successors per node)

e d = depth of the shallowest goal node

Algorith Completeness Optimality Time Complexity Space
m Complexity
BFS 4 Yes 4 Yes (for (O(b™M{d+1})) (O(b™M{d+1}))

equal step cost)

DFS H No(cango X No (O(bM{m})) where (O(bm))
infinite) m = max depth
IDS 4 Yes 74 Yes (for (O(b"{d})) (O(bd))

equal step cost)

AVAILABLE AT:

http://www.onebyzeroedu.com

<2 Explanation

e BFS: Explores level by level — finds the shallowest goal — optimal, but needs
huge memory.

e DFS: Explores deep paths first — low memory but may miss the optimal or
even any goal if loops exist.

e IDS: Repeats DFS up to increasing depths — revisits nodes multiple times but
the overhead is small ((<10%)) compared to the exponential cost saved in
memory.

#% Summary Table

Feature BFS DFS IDS
Completeness Yes No Yes
Optimality (unit Yes No Yes
cost)

Time Complexity ~ (O(b*{d+1} (O(b*{m}) (O(b"{d}))
))

Space Complexity (O(b"{d+1} (O(bm)) (O(bd))
)

Memory Usage Very High Low Moderate (Low like
DFS)

AVAILABLE AT:

http://www.onebyzeroedu.com

Question I: Variable Domains After Full Constraint Propagation

Initial Domains:

Node 1: {R}

Node 2: {R, G, B}

Node 3: {R, G, B}

Node 4: {R, G, B}

Node 5: {R, B}

After Constraint Propagation:

Node 1: {R}

Node 2: {G, B}

Node 3: {G, B}

Node 4: {G, B}

Node 5: {B}

Propagation Steps:

1. Node 1 = R (only option) — Remove R from neighbors 2 and 3

2. Node 2: {R,G,B} — {G,B} (R removed due to edge 1-2)

3. Node 3: {R.G,B} — {G,B} (R removed due to edge 1-3)

4. Node 5 = B (after checking): Remove R (would conflict with potential assignments)

5. Node 4: Remains {G,B} (multiple valid options)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career

The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

II.

Initial State (Before Backtracking)

Starting with original domains. Will assign variables in order: 1, 2, 3, 4, 5

Ready to start backtracking

Step 1: Assign Variable 1

Variable 1 has only one value in domain: R

I Assigned 1 = R

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Step 2: Assign Variable 2
WVariable 2: Try first value R from domain {R, G, B}

Assigned 2 = R
Check constraints: 2-1 edge — R # R?7 NO! Constraint violated!

Step 2 (retry): Backtrack and try next value

R failed for variable 2. Try next value: G

Assigned 2 = G
Check constraints: 2-1 (G=R), 2-3 (will check later), 2-4 (will check later)

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Step 3: Assign Variable 3
Wariable 3: Try first value R from domain {R, G, B}

Assigned 3 = R
Check: 3-1 (R=R? NQO!), Constraint violated!

Step 3 (retry): Try next value

R failed for variable 3. Try next value: G

Assigned 3 = G
Check: 3-1 (G=R), 3-2 (G=G? NQO!), Constraint violated!

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Step 3 (retry): Try next value

G failed for variable 3. Try next value: B

Assigned 3 = B
Check: 3-1 (B#R V), 3-2 (B#G), 3-4 (will check), 3-5 (will check)

Step 4: Assign Variable 4
Variable 4: Try first value R from domain {R, G, B}

Assigned 4 = R
Check: 4-2 (R=G V), 4-3 (R=B), 4-5 (will check) v

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Step 5: Assign Variable 5
Variable 5: Try first value R from domain {R, B}

Assigned 5 = R
Check: 5-3 (R=B), 5-4 (R=R? NO!), Constraint vioclated!

Step 5 (retry): Try next value

R failed for variable 5. Try next value: B

Assigned 5 = B

Check: 5-3 (BZB? NQO!), Constraint violated! No more values in domain!

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Backtrack to Variable 4

variable 5 has no valid assignment. Backtrack to variable 4 and try next value.

Changed 4 = G (trying next value)
Check: 4-2 (G=G? NO!), Constraint violated!

Step 4 (retry): Try next value

G failed for variable 4. Try next value: B

Assigned 4 = B
Check: 4-2 (B=G V), 4-3 (BB7? NO!), Constraint violated! No more values!

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Backtrack to Variable 3

Variable 4 exhausted. Backtrack to variable 3. All values tried. Backtrack to variable 2!

Backtracked to variable 2, trying 2 = B
Check: 2-1 (B#R V), 2-3 (will check), 2-4 (will check) v

Step 3 (new branch): Assign Variable 3
With 2=B, try variable 3: first value R

Assigned 3 = R
Check: 3-1 (R=R? NO!), Constraint viclated!

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Step 3 (retry): Try G
R failed. Try G for variable 3

Assigned 3 =G
Check: 3-1 (G#R V), 3-2 (G#B V), 3-4 (will check), 3-5 (will check) v

Step 4: Assign Variable 4
Variable 4: Try first value R

Assigned 4 = R
Check: 4-2 (R=B V), 4-3 (R=G), 4-5 (will check)

@

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Step 5: Assign Variable 5
Variable 5: Try first value R

Assigned 5 = R
Check: 5-3 (R=G), 5-4 (R=R? NO!), Constraint violated!

Step 5 (retry): Try B
R failed. Try B for variable 5

Assigned 5 = B
Check: 5-3 (B#G V), 5-4 (B#R V) v+ SOLUTION FOUND!

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

b) What is forward cheeking algorithm? Give an example

Let’s explain it clearly -

¢ Forward Checking Algorithm — Definition

Forward Checking is a constraint satisfaction technique used in Artificial
Intelligence and Constraint Satisfaction Problems (CSPs) (like Sudoku, map
coloring, etc.).

It is used during backtracking search to reduce the search space by looking ahead
and eliminating inconsistent values from the domains of the unassigned variables.

* How It Works
When a variable is assigned a value, forward checking:

1. Looks ahead to the remaining (unassigned) variables.

2. Removes any value from their domain that conflicts with the current
assignment.

3. If any variable’s domain becomes empty, it means the current path cannot
lead to a solution, and backtracking occurs immediately.

This helps detect inconsistencies early, saving computation time.

¢ Algorithm Steps

1. Select an unassigned variable.
2. Assign a value from its domain.
3. For each unassigned variable:

o Remove all values inconsistent with the current assignment.

AVAILABLE AT:

http://www.onebyzeroedu.com

4. If any domain becomes empty — Backtrack.

5. Else, continue assigning next variable.

¢+ Example: Map Coloring Problem

Let’s consider three regions:

A, B, and C.

Each can be colored with {Red, Green, Blue},
and adjacent regions cannot have the same color.

Adjacency:

e A—B

e B~ C

Step 1: Assign

Assign A = Red.

Step 2: Forward Checking
Since A and B are adjacent:

e Remove Red from B’s domain.
Now:

e B: {Green, Blue}

e (: {Red, Green, Blue}

Step 3: Assign next variable

Assign B = Green.

AVAILABLE AT:

http://www.onebyzeroedu.com

Forward Checking:

e B and C are adjacent — remove Green from C’s domain.
Now:

e (: {Red, Blue}

Step 4: Assign C = Red — No conflict.

All variables assigned — Solution found.

Initial State

@ G©

A:{R,G,B} B:{R,G,B} C:{R,G,B}

Step 1: Assign A = Red

@)

A:{RGB} B:{G,B} C:{R,G,B}

Forward Check: A < B— Remove Red

Step 2: Assigh B = Green

00

B:G B: G,C R:R,B

Forward Check: B < C - Remove Green

Step 3: Assign C = Red

OO

All variables assigned, and constraints
satisfied.

¢ Advantages

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

e Detects conflicts early.
e Reduces unnecessary backtracking.

e More efficient than pure backtracking.

* Disadvantages

e Still not as strong as full arc consistency (like in MAC algorithm).

e Requires extra computation to maintain domains.

(74 Summary Table

Ste Variable Domains After Forward
p Assigned Checking

Star A,B,C= {R,G,B} Initial domains

t

1 A=R B={G,B}, C={R,G,B}
2 B=G C={R,B}

3 C=R Solution found ['4

Would you like me to show this example with a diagram or pseudocode of the
algorithm next?

AVAILABLE AT:

http://www.onebyzeroedu.com

8.

a) What is logic, syntax and semantics? Write down some propositional logie syntax.

- Logic is a formal system for manipulating facts so
that true conclusions may be drawn

— “The tool for distinguishing between the true and the
false” — Averroes (12t cen.)

« Syntax: rules for constructing valid sentences
— E.g., x + 2 >y is a valid arithmetic sentence, >x2y + is not

« Semantics: “meaning” of sentences, or relationship
between logical sentences and the real world
— Specifically, semantics defines truth of sentences
—E.g.,x+2>yistrueinaworld where x=5andy =7

Propositional Logic:

« Atomic sentence:

— A proposition symbol representing a true or false statement
* Negation:

— If P is a sentence, —P is a sentence
« Conjunction:

— If P and Q are sentences, P A Q is a sentence
» Disjunction:

— If P and Q are sentences, P v Q is a sentence
* Implication:

— If P and Q are sentences, P — Q is a sentence
» Biconditional:

— If P and Q are sentences, P <> Q is a sentence

- —, A, V, =, <> are called logical connectives

AVAILABLE AT:

http://www.onebyzeroedu.com

1. Logic — Definition

Logic is the study of reasoning and inference — how we can derive conclusions
from given facts or premises.

In Artificial Intelligence (AI) and Computer Science, logic provides a formal
language to represent knowledge and to perform reasoning automatically.

2. Syntax — Definition

Syntax refers to the rules that define the structure or form of valid statements (or
formulas) in a logical language.

<+ In simple words:
Syntax = grammar or structure of logical expressions.

For example, in Propositional Logic, a well-formed formula (WFF) follows these
syntactic rules:

e Atomic propositions: P,Q,R....

Logical connectives: =,/\,V,—,«<
Parentheses are used to group subformulas.

Example of Syntax (valid formulas):

P
-P

PAQ
(PV-Q)—R

x Invalid syntax example:
e PQV
e —PQ

3. Semantics — Definition

Semantics gives meaning to the syntactically correct sentences.
It defines how truth values (True or False) are assigned to logical expressions.

<+ In simple words:
Semantics = meaning / interpretation of logical symbols.

AVAILABLE AT:

http://www.onebyzeroedu.com

For example:

e IfPistrue and Q is false,
then the meaning of P/AQ (P AND Q) is False.

Truth Table Semantics Example

P Q PAQ PVQ P P—Q
T T T T F T
T F F T F F
F T F T T T
F F F F T T

@ 4. Summary Table

Concept Meaning Example

Logic Study of reasoning and inference Deductive reasoning, Propositional logic
Syntax Rules of how sentences are written (PvQ@)—R

Semantics Meaning or truth of the sentences IfP=T,Q=F=2PvQ=T

€ Some Common Propositional Logic Syntax Rules

Symbol Meaning Example
P,Q,R Atomic propositions P = "It is raining”
NOT +P: "It is not raining”
A AND P A @: "ltis raining and cold"
Y OR P/ @Q: "ltis raining or cold"
— IMPLIES P — @:"If it rains, the ground is wet"

4+ IFF (if and only if) P s @:"lt rains if and only if it's cloudy”

AVAILABLE AT:

http://www.onebyzeroedu.com

b) Show that p->(g->r) is logically equivalent to (p”q)—rt

Logical Equivalence

Two propositions (logical statements) P and Q are said to be logically equivalent
if they always have the same truth value (True or False) in every possible case of
their variables.

That means:

P=Q if and only if P and Q are both true or both false for all possible truth
assignments

+ Condition of Logical Equivalence

P—Q must be a tautology.

<7 That is, the compound statement (P<>Q) should be True in all rows of the truth
table

@ Step 5: Verification by Truth Table

p q r q-r p—(q—r) (pAg)—r
T T T T T T
T T F F F F
T F T T T T
T F F T T T
F T T T T T
F T F F T T
F F T T T T
F F F T T T

c¢) Translate each of the following sentences into First Order Logic (FOL)

Not all cars have carburetors ii. All babies are illogical it. Every connected and

AVAILABLE AT:

http://www.onebyzeroedu.com

1. Translate each of the following sentences into First Order Logic (FOL).

(a) Not all cars have carburetors
—Vz [car(x) — carburetors(z)] or
dz [car(x) N —carburetors(x)]

(b) Some people are either religious or pious
Jr (R(x) & P(x)) = 3= ~(R(x) <> P(x)) or
—Vz [R(x) <> P(x)] or
3z((R(z) A —~P(x)) V (~R(z) A P(z))

(c) No dogs are intelligent
Vz (dog(x) — —Intelligent(x)) or
=3z (dog(x) N Intelligent(x))

(d) All babies are illogical
YV (baby(x) — illogical(x)) or
=3z (baby(x) N —illogical(x))

(e) Every number is either negative or has a square root
Yz —(negative(x) <+ sqroot(x)) or
—3Jz (negative(x) <+ sqroot(x)) or
YV ((negative(x) A —sqroot(x)) V (—negative(x) A sqroot(x))

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

(f) Some numbers are not real

Jz—Real(x) or —Va Real(x)

(g) Every connected and circuit-free graph is a tree
Vz [(conn(z) A —eir(z)) — tree(x)] or
-3z [(conn(z) A —cir(x)) A —iree(r)]

(h) Not every graph is connected
-z connected(x) or Jr —connected(r)

(i) A1l that glitters is not gold
Yz [glitter(x) — —gold(z)] or
—Jdz [glitter(x) A gold(z)

(j) Not all that glitters is gold
—Vx(glitter(xz) — gold(x)) or
Jz(glitter(x) A —gold(x)).

(k) There is a barber who shaves all men in the town who do not shave themselves
Jz [Barber (x) Ay [man(y) A —shaves(y,y)] — shaves(z. y)]

(1) There is no business like show business
Vi [(business(x) A (x # show business)) = =like(x, show business)]

2. Rewrite each proposition symbolically, given that the universe of discourse is a set of real numbers

(a) For each integer x, there exist an integer y such that z+y =10
Vz [int(x) = Jy (int(y) A (z 4y =10))]

(b) There exist an integer z such that x4y =y for every integer y
3z [int(x) AVy (int(y) = (z+y =1))]

(c) For all integers z and y, x.jy=1y.x
Yz Wy [[int(z) Aint(y)] = 2.y = y.2]

(d) There are integers x and y such that x+y=5
3z Jy [(int(z) Nint(y)) A (z+y =5)]

AVAILABLE AT:

http://www.onebyzeroedu.com

