
2019-20

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

1.a)Khata
 b)khata
 c)khata
2.a)khata
)b) Lusagine, Mary is a model-based Al that builds and maintains an internal representation
of the world. And Greg, on the other hand, is a goal-based At that focuses on achieving
specific @bjectives
Describe the fundamental differences between Model-Based Mary and Goal-Based Greg in
lents of their operational strategies. How does each approach affect their decision-making
processes and adaptability to changes in their environment?

Ans:

●​ Model-Based Mary → Thinks before acting, predicts, and adapts via
her internal model.​

●​ Goal-Based Greg → Acts toward a defined goal, focusing on outcomes
more than understanding the environment.​

How it works: Maintains an internal model of the world to handle partially

observable environments.

Example:

A vacuum cleaner robot:

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Remembers which rooms it has cleaned and where dirt may still remain.

Self-parking car: Keeps track of car position and obstacles.

Goal-Based Agent

How it works: Chooses actions by considering future states and whether they

achieve a goal.

Example:

A GPS navigation system: Chooses the shortest path to the destination.

Chess AI: Selects moves that lead to checkmate.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Feature

 Model-Based Mary

Goal-Based Greg

Knowledge Maintains internal model of

environment

Focuses on goal definitions

Decision

Basis

Predictions from model Goal satisfaction

Adaptabilit

y

High (can re-plan when model

updates)

Medium (depends on goal

flexibility)

Complexity Higher computationally Simpler and faster

Example

Use

Autonomous planning,

simulation

Search and optimization

problems

 Planning Plans actions based on Plans actions based on goal
 modeled state transitions. satisfaction.

C) Define Rational Agent Agent with example. Is vacuum cleaner agent
Rational? Why or why not? Explain with suitable reasons.

A Rational Agent is an AI agent that acts to achieve the best possible
outcome (or, when there is uncertainty, the best expected outcome) based
on its perception and knowledge of the environment.

Formally:

A rational agent chooses an action that maximizes its
performance measure, given the percept sequence and its built-in
knowledge.

•Performance measure (utility function):

An objective criterion for success of an agent's behavior
ExpectedUtility(action) = sum_outcomes Utility(outcome) * P(outcome)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Example of a Rational Agent:

Is the Vacuum Cleaner Agent Rational?

Yes, it can be rational — depending on its design and performance measure.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Condition Explanation

Percepts The vacuum cleaner perceives whether the current square is
dirty or clean and where it is located.

Actions It can move Left, Right, or Suck (clean).

Performance
Measure

Keep the room as clean as possible using minimal actions and
time.

Rational
Behavior

If the vacuum cleaner sucks dirt when the square is dirty and
moves efficiently to find dirt when clean, it acts rationally.

When It’s Not Rational:

If the vacuum cleaner:

●​ Cleans already clean areas repeatedly, or​

●​ Moves randomly without sensing dirt,​
 then it’s not rational, since it fails to maximize cleanliness efficiently.

3.a) Defire in your own words the following term: state, state space, search
tree, search node. goal, action, transition model, and branching factor.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Term Tic-Tac-Toe Example

State The current layout of the Tic-Tac-Toe board (e.g., X in the
center, O in the top-left).

State Space All possible board configurations that can occur during the
game (from empty board to full board).

Search Tree The tree formed by all possible sequences of moves by X
and O starting from an empty board.

Search
Node

One specific board position in the search tree after a certain
number of moves.

Goal The winning state where a player gets three in a row
(horizontal, vertical, or diagonal), or a draw if the board is full.

Action Placing an X or O in an empty cell on the board.

Transition
Model

The rule showing how the board changes after a move (e.g.,
X places in an empty cell → that cell now contains X).

Branching
Factor

The number of possible moves from a state (e.g., at the start
9 possible moves, then 8, 7, etc.).

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

b)What is Greedy Best First Search? Explain with an example the different
stages of Greedy Best First search

Greedy Best-First Search is a search algorithm that selects the next node
to explore based on which node appears to be closest to the goal,
according to a heuristic function h(n).

It is called “greedy” because it always tries to expand the node that looks
best at the moment, without considering the total cost so far.

Expand the node that has the lowest value of the heuristic function h(n).

Formula:

f(n)=h(n)Where:

●​ h(n) = heuristic estimate of the cost from node nnn to the goal.​

●​ GBFS ignores the path cost g(n)); it only uses h(n)

 (A)

 / \

 2 / \ 4

 S B

 | \ |

 3 | \2 | 3

 | \ |

 C----D--G

 2

Heuristic values h(n) (estimated straight-line distance to G):

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

node S A B C D G

h(n) 7 6 2 6 3 0

Ste

p

Frontier (Nodes to Explore) Chosen Node

(Lowest h)

Action /

Result

1 {S} S (h=7) Start from S

2 Expand S → {A(6), C(6), D(3)} D (h=3) Move to D

3 Expand D → {G(0)} + previous

nodes

G (h=0) Goal found

✅

S → D → G

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

C)Explain iterative deepening search with example.

🧠 What is Iterative Deepening Search (IDS)?

Iterative Deepening Search (IDS) is a search algorithm that combines the

advantages of Depth-First Search (DFS) and Breadth-First Search (BFS).

👉 It performs repeated depth-limited searches, increasing the limit each time

until the goal is found.

⚙️ How It Works:

1.​ Start with depth limit = 0.​

2.​ Perform a Depth-Limited Search (DLS) up to that depth.​

3.​ If the goal is not found, increase the depth limit by 1 and repeat.​

4.​ Continue until the goal is found.

​

🧩 Why Use IDS?

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ Like BFS, it will find the shallowest (optimal) goal.​

●​ Like DFS, it uses low memory.​

●​ It avoids DFS’s infinite loop problem and BFS’s high memory usage.​

🌳 Example:

Consider this simple search tree:

 A

 / | \

 B C D

 / \ / \

 E F G H

Goal: Find node G

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

🔁 Stages of Iterative Deepening Search

Iteratio

n

Depth

Limit

Nodes Visited (in

order)

Goal Found?

1 0 A ❌ No

2 1 A, B, C, D ❌ No

3 2 A, B, E, F, C, D, G ✅ Yes (found at

depth 2)

✅ Result:

The algorithm finds G at depth 2, after exploring nodes gradually deeper each

time.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Feature Description

Completeness Yes, it always finds the goal if one exists.

Optimality Yes, if all step costs are equal.

Time

Complexity

O(bᵈ) (like BFS)

Space

Complexity

O(bd) (like DFS, very memory efficient)

Best Use When the search space is large and depth of goal is

unknown.

•Complete?

Yes

•Optimal?

Yes, if step cost = 1

•Time?

(d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)

•Space? O(bd)

🧾 In short:

Iterative Deepening Search repeatedly performs depth-limited

searches with increasing limits until the goal is found — combining

the low memory of DFS and the optimality of BFS.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

4.a)Explain the process of Minimax without alpha-beta pruning and how it

determines the optimal move.

Minimax Algorithm (Without Alpha-Beta Pruning)

Purpose:​
 Minimax is used in two-player zero-sum games (like Tic-Tac-Toe or Chess) to
determine the optimal move by assuming that:

●​ MAX player tries to maximize the score.​

●​ MIN player tries to minimize the score.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Process:

1.​ Start from the leaf nodes (terminal states) and assign their utility values.​

2.​ Move up the tree, alternating between MIN and MAX levels:​

○​ At MAX nodes, choose the maximum value of child nodes.​

○​ At MIN nodes, choose the minimum value of child nodes.​

3.​ Continue until the root node is assigned a value.​

4.​ The optimal move for MAX is the child node that gives this value.

Step-by-Step Minimax Computation

Step 1: Evaluate leaf nodes

●​ Leaves are: 3, 5, 6, 9, 1, 2, 0, -1​

Step 2: Compute MAX nodes (D, E, F, G)

●​ D = max(3, 5) = 5​

●​ E = max(6, 9) = 9​

●​ F = max(1, 2) = 2​

●​ G = max(0, -1) = 0​

Step 3: Compute MIN nodes (B, C)

●​ B = min(D, E) = min(5, 9) = 5​

●​ C = min(F, G) = min(2, 0) = 0​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Step 4: Compute MAX node (A)

●​ A = max(B, C) = max(5, 0) = 5​

Optimal Move

●​ MAX (A) should choose B, because it leads to the highest guaranteed
value (5).

Feature Value

Optimal Move A → B

Optimal Value 5

Completeness Yes (tree is finite)

Time
Complexity

O(b^m) = O(2³) = O(8) nodes in this
example

 Space Complexity O(m) = O(3) (depth of tree)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

b) How does alpha-beta pruning improve the efficiency of the Minimax
algorithm in evaluating game trees like the tree?

Alpha (α) = best value that MAX can guarantee along the current path.​

Beta (β) = best value that MIN can guarantee along the current path.​

While evaluating a node:​

●​ If current node value > β at a MIN node → stop exploring, because
MIN will avoid it.​

●​ If current node value < α at a MAX node → stop exploring, because
MAX will avoid it.​

This is called pruning because the branch is cut off early.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Efficiency Gains

●​ Without pruning: Minimax evaluates all nodes → O(b^m) time
complexity.​

●​ With alpha-beta pruning:​

○​ Best-case time complexity: O(b^(m/2)) (almost square root of
nodes).​

○​ Worst-case: still O(b^m) if the tree is poorly ordered.​

●​ Space complexity remains the same: O(m).

Without pruning: all 8 leaves evaluated.​
 With alpha-beta pruning (assuming good move ordering):

1.​ Start at A → B → D​

○​ D = max(3,5) = 5​

○​ α at A = 5​

2.​ Next E under B: max(6,9) = 9​

○​ MIN(B) = min(5, 9) = 5 → β at B = 5​

○​ α = 5 → if we explore C, some branches may be pruned because
MAX already has 5, so some values under C cannot improve the
outcome for MAX.​

In effect, alpha-beta pruning avoids exploring F and part of G
because they cannot yield a better result than 5 for MAX.

1.​ Reduces computation: fewer nodes are evaluated.​

2.​ Speeds up decision-making: especially important for deeper game
trees like Chess.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

3.​ Does not affect optimality: the final Minimax value and move remain
the same.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

C) Explain the terms 'max node" and "min node" in the Minimax algorithm
,how they are used to represent players in a game?

🧠 Max Node and Min Node in Minimax Algorithm

In the Minimax algorithm, nodes in the game tree represent game states,
and they are classified based on which player’s turn it is.

1️⃣ Max Node

●​ Represents: The turn of the MAX player (the player trying to maximize
the score).​

●​ Purpose: Chooses the child node with the maximum value.​

●​ Role in Game: MAX player is trying to select the move that gives the
best possible outcome.​

●​ Example: In Tic-Tac-Toe, if X is the MAX player, nodes where X makes
a move are max nodes.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

2️⃣ Min Node

●​ Represents: The turn of the MIN player (the opponent trying to
minimize MAX’s score).​

●​ Purpose: Chooses the child node with the minimum value.​

●​ Role in Game: MIN player tries to prevent MAX from winning or
minimize MAX’s advantage.​

●​ Example: In Tic-Tac-Toe, if O is the MIN player, nodes where O makes
a move are min nodes.​

🔄 How They Work in Minimax

1.​ Leaf nodes contain the utility value of that game state.​

2.​ At MAX nodes, the algorithm picks the highest value from its children.​

3.​ At MIN nodes, it picks the lowest value from its children.​

4.​ This alternation continues up the tree until the root, which determines
the optimal move for MAX.​

🌳 Visual Example (Partial Tree)
 A (MAX)
 / \
 B (MIN) C (MIN)

●​ A (MAX node): MAX chooses between B and C to maximize outcome.​

●​ B, C (MIN nodes): MIN chooses moves that minimize MAX’s score.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

✅ In short:

Max nodes represent the moves of the player trying to maximize
the score, and Min nodes represent the opponent’s moves trying
to minimize that score. This alternation models the strategic
behavior of both players in a game tree.

5.a)Consider the graph shown below where the numbers on the links are link
costs and the numbers next to the states are heuristic estimates. Note that the
arcs are undirected. Let A be the start state and G be the goal state.

Simulate A search with a strictly expanded list on this graph. At each step,
show the path to the state of the node that's being expanded, the length of
that path, the total estimated cost of the path (actual heuristic), and the current
value of the expanded list (as a list of states).

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Assumptions / rules used

●​ Heuristic values read from the picture: (h(A)=5,; h(B)=4,; h(C)=1,;
h(H)=1,; h(G)=0).​

●​ Edge costs:A−B=1,A−C=3,B−C=1,B−G=9,C−G=5,C−H=2,H−G=1.
●​ Standard A* tie-breaks arbitrarily (no tie occurred that affected order

here).​

●​ “Strictly expanded list” = closed list: once a node is expanded it is not
re-opened even if a cheaper path is later discovered.​

Step-by-step A* expansions

I'll simulate A* on that graph and report, at each expansion, (1) the path to the node
being expanded, (2) the path length (g), (3) the total estimated cost (f=g+h) (they
called this the “total estimated cost”), and (4) the current expanded (closed) list.

Assumptions / rules used

●​ Heuristic values read from the picture: (h(A)=5,; h(B)=4,; h(C)=1,; h(H)=1,;
h(G)=0).​

●​ Edge costs: (A!-!B=1,; A!-!C=3,; B!-!C=1,; B!-!G=9,; C!-!G=5,; C!-!H=2,;
H!-!G=1).​

●​ Standard A* tie-breaks arbitrarily (no tie occurred that affected order here).​

●​ “Strictly expanded list” = closed list: once a node is expanded it is not
re-opened even if a cheaper path is later discovered.​

Step-by-step A* expansions

1.​Expand: A​

○​ Path to node: A​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

○​ (g = 0)​

○​ (f = g + h = 0 + 5 = 5)​

○​ Expanded list (closed): [A]​

2.​ (When expanding A we add neighbors B and C to open:​
 B: (g=1,; f=1+4=5).​
 C: (g=3,; f=3+1=4).)​

3.​Expand: C (lowest (f=4))​

○​ Path to node: A - C​

○​ (g = 3)​

○​ (f = 3 + 1 = 4)​

○​ Expanded list: [A, C]​

4.​ (Expanding C generates/updates:​

○​ B via C: (g=3+1=4) but B already in open with (g=1) (keep the better
(g=1)).​

○​ G via C: (g=3+5=8,; f=8+0=8).​

○​ H via C: (g=3+2=5,; f=5+1=6).)​

5.​Expand: B (next lowest (f=5))​

○​ Path to node: A - B​

○​ (g = 1)​

○​ (f = 1 + 4 = 5)​

○​ Expanded list: [A, C, B]​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

6.​(Expanding B would give C via B a path (g=1+1=2), which is better than C's
current (g=3), but C is already in the closed list and we are following the strict
rule of not reopening expanded nodes — so we ignore that improvement. B
also gives G via B: (g=1+9=10) (worse than the existing G via C with (g=8)).)​

7.​Expand: H (next lowest (f=6), path from C)​

○​ Path to node: A - C - H​

○​ (g = 5)​

○​ (f = 5 + 1 = 6)​

○​ Expanded list: [A, C, B, H]​

8.​ (Expanding H updates G via H to (g=5+1=6,; f=6+0=6); this is better than the
previous G in open with (g=8), so G becomes (g=6,f=6).)​

9.​Expand: G (goal reached; lowest (f=6))​

○​ Path to node: A - C - H - G​

○​ (g = 6)​

○​ (f = 6 + 0 = 6)​

○​ Expanded list: [A, C, B, H, G]​

Stop — goal expanded. The found path is A - C - H - G with cost (6).

Final result

●​ Returned path: A → C → H → G​

●​ Path cost (g): 6​

●​ Expanded (in expansion order): A, C, B, H, G​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ b) is the heuristic given in Problem 5.a admissible? Explain.

 Yes. The heuristic is admissible because it is less than or equal to the
actual shortest distance to the goal.

To determine if the heuristic is admissible, I need to check if it never
overestimates the actual cost to reach the goal from any node.

A heuristic h(n) is admissible if: h(n) ≤ actual shortest path cost from n to G
for all nodes n.

Let me find the actual shortest paths from each node to G:

Actual shortest paths to G:

1.​ From A to G:​

○​ Path: A → C → H → G, Cost: 3 + 2 + 1 = 6
○​ h(A) = 5 ≤ 6 ✓

2.​ From B to G:​

○​ Path: B → C → H → G, Cost: 1 + 2 + 1 = 4
○​ h(B) = 4 ≤ 4 ✓

3.​ From C to G:​

○​ Path: C → H → G, Cost: 2 + 1 = 3
○​ h(C) = 1 ≤ 3 ✓

4.​ From H to G:​

○​ Path: H → G, Cost: 1
○​ h(H) = 1 ≤ 1 ✓

5.​ From G to G:​

○​ Cost: 0
○​ h(G) = 0 ≤ 0 ✓

Yes, the heuristic is admissible. ✓

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

C) Is the heuristic given in Problem 2 consistent? Explain.
 No, the heuristic is not consistent. There are two places in the graph where
consistency fails. One is between A and C where the drop in heuristic is 4, but
the path length is only 3. The other is between B and C where the drop in
heuristic is 3 but the path length is only 1.

To determine if the heuristic is consistent (also called monotone), I need to check if it
satisfies the triangle inequality for all edges.

A heuristic h(n) is consistent if: h(n) ≤ c(n, n') + h(n') for every edge from node n to
neighbor n', where c(n, n') is the edge cost.

Let me check all edges in the graph:

Checking consistency for each edge:

1.​ Edge A → B (cost = 1):​

○​ h(A) ≤ c(A,B) + h(B)?
○​ 5 ≤ 1 + 4 = 5 ✓

2.​ Edge A → C (cost = 3):​

○​ h(A) ≤ c(A,C) + h(C)?
○​ 5 ≤ 3 + 1 = 4
○​ 5 ≤ 4 is FALSE ✗

3.​ Edge B → C (cost = 1):​

○​ h(B) ≤ c(B,C) + h(C)?
○​ 4 ≤ 1 + 1 = 2
○​ 4 ≤ 2 is FALSE ✗

4.​ Edge B → G (cost = 9):​

○​ h(B) ≤ c(B,G) + h(G)?
○​ 4 ≤ 9 + 0 = 9 ✓

5.​ Edge C → H (cost = 2):​

○​ h(C) ≤ c(C,H) + h(H)?
○​ 1 ≤ 2 + 1 = 3 ✓

6.​ Edge C → G (cost = 5):​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

○​ h(C) ≤ c(C,G) + h(G)?
○​ 1 ≤ 5 + 0 = 5 ✓

7.​ Edge H → G (cost = 1):​

○​ h(H) ≤ c(H,G) + h(G)?
○​ 1 ≤ 1 + 0 = 1 ✓

Conclusion:

No, the heuristic is NOT consistent. ✗

The heuristic violates the consistency condition on two edges:

●​ A → C: h(A) = 5 > 4 = c(A,C) + h(C)
●​ B → C: h(B) = 4 > 2 = c(B,C) + h(C)

This means the heuristic is admissible but not consistent.

6.a)

Let's run Uniform-Cost Search (UCS) on the drawn graph and find the optimal path
S → G.

Graph edges (interpreted from picture)​
 S–A:3, S–B:2, S–C:1​
 A–D:6, D–F:1, F–G:2​
 B–E:6, E–G:5​
 C–G:22

Start: (S) with cost 0.

Step 0 — initialize

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ Open (frontier): S(0)​

●​ Closed (expanded): []​

Step 1 — expand S

●​ Expand: S​

●​ Path to node: S , (g=0)​

●​ Add neighbors to open:​

○​ A via S: S–A cost (3) → A(3)​

○​ B via S: S–B cost (2) → B(2)​

○​ C via S: S–C cost (1) → C(1)​

●​ Open (sorted by cost): C(1), B(2), A(3)​

●​ Closed: [S]​

Step 2 — expand C (lowest cost)

●​ Expand: C​

●​ Path: S–C , (g=1)​

●​ Successors: G via C cost (1 + 22 = 23) → add G(23)​

●​ Open: B(2), A(3), G(23)​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ Closed: [S, C]​

Step 3 — expand B

●​ Expand: B​

●​ Path: S–B , (g=2)​

●​ Successors: E via B cost (2 + 6 = 8) → add E(8)​

●​ Open: A(3), E(8), G(23)​

●​ Closed: [S, C, B]​

Step 4 — expand A

●​ Expand: A​

●​ Path: S–A , (g=3)​

●​ Successors: D via A cost (3 + 6 = 9) → add D(9)​

●​ Open: E(8), D(9), G(23)​

●​ Closed: [S, C, B, A]​

Step 5 — expand E

●​ Expand: E​

●​ Path: S–B–E , (g=8)​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ Successors: G via E cost (8 + 5 = 13).​

○​ G already in open at 23 → update to better cost 13.​

●​ Open: D(9), G(13)​

●​ Closed: [S, C, B, A, E]​

Step 6 — expand D

●​ Expand: D​

●​ Path: S–A–D , (g=9)​

●​ Successors: F via D cost (9 + 1 = 10) → add F(10)​

●​ Open: F(10), G(13)​

●​ Closed: [S, C, B, A, E, D]​

Step 7 — expand F

●​ Expand: F​

●​ Path: S–A–D–F , (g=10)​

●​ Successors: G via F cost (10 + 2 = 12).​

○​ G currently in open at 13 → update to better cost 12.​

●​ Open: G(12)​

●​ Closed: [S, C, B, A, E, D, F]​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Step 8 — expand G (goal)

●​ Expand: G​

●​ Path: S–A–D–F–G , (g=12)​

●​ Closed: [S, C, B, A, E, D, F, G]​
 Stop — goal expanded.​

Result

●​ Optimal path found by UCS: S → A → D → F → G​

●​ Total path cost: (12)​

●​ Order of expansions (closed list): S, C, B, A, E, D, F, G​

(UCS updated the best G path as better routes were discovered; the final best route is
S–A–D–F–G with cost 12.)

b) Write down the advantage of IDS over BFS and DFS. Also, shows times and space
complexity among them.

Here’s a clear comparison among IDS (Iterative Deepening Search), BFS
(Breadth-First Search), and DFS (Depth-First Search) — including their
advantages, time complexity, and space complexity:

✅ Advantage of IDS over BFS and DFS

Compared
With

Advantage of IDS

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Over BFS IDS uses much less memory. BFS stores all nodes at the current
level (which can be exponential in size), but IDS stores only one path
from the root to a leaf (like DFS).

Over DFS IDS is complete and optimal (for uniform step cost), whereas DFS
can get stuck in deep or infinite paths and may not find the shallowest
goal.

👉 In summary:​
 IDS combines the space efficiency of DFS with the completeness and optimality of
BFS.

⚙️ Complexity Comparison

Let:

●​ b = branching factor (average number of successors per node)​

●​ d = depth of the shallowest goal node​

Algorith
m

Completeness Optimality Time Complexity Space
Complexity

BFS ✅ Yes ✅ Yes (for
equal step cost)

(O(b^{d+1})) (O(b^{d+1}))

DFS ❌ No (can go
infinite)

❌ No (O(b^{m})) where
m = max depth

(O(bm))

IDS ✅ Yes ✅ Yes (for
equal step cost)

(O(b^{d})) (O(bd))

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

🧠 Explanation

●​ BFS: Explores level by level → finds the shallowest goal → optimal, but needs
huge memory.​

●​ DFS: Explores deep paths first → low memory but may miss the optimal or
even any goal if loops exist.​

●​ IDS: Repeats DFS up to increasing depths → revisits nodes multiple times but
the overhead is small ((<10%)) compared to the exponential cost saved in
memory.​

🏁 Summary Table

Feature BFS DFS IDS

Completeness Yes No Yes

Optimality (unit
cost)

Yes No Yes

Time Complexity (O(b^{d+1}
))

(O(b^{m})
)

(O(b^{d}))

Space Complexity (O(b^{d+1}
))

(O(bm)) (O(bd))

Memory Usage Very High Low Moderate (Low like
DFS)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

7.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

II.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

b) What is forward cheeking algorithm? Give an example

Let’s explain it clearly 👇

🔹 Forward Checking Algorithm — Definition

Forward Checking is a constraint satisfaction technique used in Artificial
Intelligence and Constraint Satisfaction Problems (CSPs) (like Sudoku, map
coloring, etc.).

It is used during backtracking search to reduce the search space by looking ahead
and eliminating inconsistent values from the domains of the unassigned variables.

🔹 How It Works

When a variable is assigned a value, forward checking:

1.​ Looks ahead to the remaining (unassigned) variables.​

2.​ Removes any value from their domain that conflicts with the current
assignment.​

3.​ If any variable’s domain becomes empty, it means the current path cannot
lead to a solution, and backtracking occurs immediately.​

This helps detect inconsistencies early, saving computation time.

🔹 Algorithm Steps

1.​ Select an unassigned variable.​

2.​ Assign a value from its domain.​

3.​ For each unassigned variable:​

○​ Remove all values inconsistent with the current assignment.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

4.​ If any domain becomes empty → Backtrack.​

5.​ Else, continue assigning next variable.​

🔹 Example: Map Coloring Problem

Let’s consider three regions:​
 A, B, and C.​
 Each can be colored with {Red, Green, Blue},​
 and adjacent regions cannot have the same color.

Adjacency:

●​ A ↔ B​

●​ B ↔ C​

Step 1: Assign

Assign A = Red.

Step 2: Forward Checking

Since A and B are adjacent:

●​ Remove Red from B’s domain.​
 Now:​

●​ B: {Green, Blue}​

●​ C: {Red, Green, Blue}​

Step 3: Assign next variable

Assign B = Green.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Forward Checking:

●​ B and C are adjacent → remove Green from C’s domain.​
 Now:​

●​ C: {Red, Blue}​

Step 4: Assign C = Red → ✅ No conflict.

All variables assigned → Solution found.

🔹 Advantages

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ Detects conflicts early.​

●​ Reduces unnecessary backtracking.​

●​ More efficient than pure backtracking.​

🔹 Disadvantages

●​ Still not as strong as full arc consistency (like in MAC algorithm).​

●​ Requires extra computation to maintain domains.​

✅ Summary Table

Ste
p

Variable
Assigned

Domains After Forward
Checking

Star
t

A,B,C = {R,G,B} Initial domains

1 A = R B={G,B}, C={R,G,B}

2 B = G C={R,B}

3 C = R Solution found ✅

Would you like me to show this example with a diagram or pseudocode of the
algorithm next?

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

8.

a) What is logic, syntax and semantics? Write down some propositional logie syntax.

Propositional Logic:

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

1. Logic — Definition

Logic is the study of reasoning and inference — how we can derive conclusions
from given facts or premises.

In Artificial Intelligence (AI) and Computer Science, logic provides a formal
language to represent knowledge and to perform reasoning automatically.

2. Syntax — Definition

Syntax refers to the rules that define the structure or form of valid statements (or
formulas) in a logical language.

👉 In simple words:​
 Syntax = grammar or structure of logical expressions.

For example, in Propositional Logic, a well-formed formula (WFF) follows these
syntactic rules:

●​ Atomic propositions: P,Q,R,...​

●​ Logical connectives: ¬,∧,∨,→,↔
●​ Parentheses are used to group subformulas.

Example of Syntax (valid formulas):

●​ P
●​ ¬P
●​ P∧Q
●​ (P∨¬Q)→R

❌ Invalid syntax example:

●​ PQ ∨
●​ →PQ

3. Semantics — Definition

Semantics gives meaning to the syntactically correct sentences.​
 It defines how truth values (True or False) are assigned to logical expressions.

👉 In simple words:​
 Semantics = meaning / interpretation of logical symbols.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

For example:

●​ If P is true and Q is false,​
 then the meaning of P∧Q (P AND Q) is False.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

b) Show that p->(q->r) is logically equivalent to (p^q)→r

 Logical Equivalence

Two propositions (logical statements) P and Q are said to be logically equivalent​
 if they always have the same truth value (True or False) in every possible case of
their variables.

That means:

P≡Q if and only if P and Q are both true or both false for all possible truth
assignments

🔹 Condition of Logical Equivalence

P↔Q must be a tautology.

👉 That is, the compound statement (P↔Q) should be True in all rows of the truth
table

c) Translate each of the following sentences into First Order Logic (FOL)

Not all cars have carburetors ii. All babies are illogical it. Every connected and

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

