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1. a)answer:

Sure, Emon /&
Let’s go step by step —

1. Turing Machine (TM): Definition

A Turing Machine (TM) is a mathematical model of computation that defines an abstract
machine capable of simulating any computer algorithm.

It was introduced by Alan Turing (1936) and is used to describe what can be computed
and how efficiently.

Formal Definition:
A Turing Machine can be represented as a 7-tuple:M=(Q,Z,I',6,q0,qaccept,greject)
Where:
Sy Meaning

mb
ol

Q Finite set of states

)2 Input alphabet (symbols allowed in input)
(Sig
ma)

r Tape alphabet (includes 2 plus blank symbol ‘)
(Ga
mm

o] Transition function: 8(q, X) — (p, Y, D) where D € {L, R} (Left or
(del Right movement)
ta)

qo Start state

g_a Accepting (final) state
cce

pt
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q_r Rejecting (final) state
ejec

Working Principle:

TM has an infinite tape divided into cells.

Each cell contains one symbol (from T').

A tape head reads/writes symbols and moves left or right.

Based on the current state and tape symbol, the transition function & determines:

o The next state,
o The symbol to write, and

o The direction to move.

If TM reaches q_accept, the input is accepted; if q_reject, it's rejected.

‘ 1 ullil IH iviaul 111G \ 1 IVI}

Finite

Infinite tape with tape symbols

control
Tape head

B|B[B|X, |X, [ X,

X.

X B|B

n

«— Input & output tape symbols ——»i

B: blank symbol (special symbol reserved to indicate data boundary)

Diagram (conceptually):
SR e T O e T e Y Y O

T
Tape Head
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At each step:

o(a, X) = (p, Y, D)

means: In state q reading X — write Y, move D (L or R), and go to state p.

Example:

A TM that accepts strings with equal number of 0’s and 1’s is a non-trivial example.

2. Pushdown Automaton (PDA): Explanation

A Pushdown Automaton (PDA) is a type of automaton that uses a stack in addition to its
finite control.
It is more powerful than a Finite Automaton (FA) but less powerful than a Turing Machine.

PDA is mainly used to recognize Context-Free Languages (CFLs).

Formal Definition:

A PDA is defined as a 7-tuple:M=(Q,2,I,6,q0,Z0,F)

Where:
S Meaning
y
m
b
o
|
Q Finite set of states
z Input alphabet
r Stack alphabet
o] Transition function: 8(q, a, X) — (p, y) where: — q = current state —a =

current input symbol (or €) — X = top of stack symbol — y = string to
replace X on stack
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q Start state

Z Initial stack symbol

F Set of accepting (final) states

Working Principle:

PDA reads input from left to right.

It can push or pop symbols on the stack.

The stack provides memory, allowing PDA to recognize patterns like matching

parentheses.
PDA can accept input by:
1. Final state, or

2. Empty stack.

INPUT TAPE X

Finite
Control
Unit

Diagram (conceptually):

Input Tape —abba
Stack — Z0 |
States — q0, q1, of
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Transition example:

0(q0, a, Z0) = (g1, AZO0)
o(q1, b, A) =(q1, ¢€)

Meaning:

When reading a, push A on stack.

When reading b, pop A from stack.

Example:

PDA for language:

[

L={a*nb™\|[\n=0}

]
Steps:

For each a, push symbol (say X) on stack.
For each b, pop one X.

Accept if stack becomes empty at end.

Comparison Summary:

Feat Turing Machine
ure

Me Infinite Tape

mor

y

Pow Recognizes Recursively
er Enumerable Languages
Rev Can move left or right
ersib

ility
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Acc Final state (or halting) Final state or empty

epta stack

nce

Exa Simulates any algorithm Recognizes balanced
mple parentheses, arbn

B.Answer: Prove that every language accepted by a multitap TM is recursively enumerable.

Proof: Suppose language L is accepted by a k-tape TM M. We simulate M with
a one-tape TM N whose tape we think of as having 2k tracks. Half these tracks
hold the tapes of M, and the other half of the tracks each hold only a single
marker that indicates where the head for the corresponding tape of M is
currently located. Figure assumes K = 2. The second and fourth tracks hold the
contents of the first and second tapes of M, track 1 holds the position of the
head of tape 1 and track 3 holds the position of the second tape head.

Track 1 ... X

Track 2
Track 3
Traclf 4

Figure: Simulation of a two-tape Turing machine by a one-tape Turing
machine.
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To simulate a move of M, N’s head must visit the K head markers. So that N not
get lost, it must remember how many head markers are to its left at all times;
that count is stored as a component of N’s finite control. After visiting each
head marker and storing the scanned symbol in a component of its finite control,
N knows what tape symbols are being scanned by each of M’s heads. N also
knows the state of M, which it stores in N’s own finite control. Thus, N knows
what move M will make.

N now revisits each of the head markers on its tape, changes the symbol in the
track representing the corresponding tapes of M, and moves the head markers
left or right, if necessary. Finally, N changes the state of M as recorded in its
own finite control. At this point, N has simulated one move of M.

We select as N’s accepting states all those states that record M’s state as one of
the accepting states of M. Thus, whenever the simulated M accepts, N also
accepts and M does not accept otherwise.

Multitape TMs = Basic TMs

= Theorem: Every language accepted by a k-
tape TM is also accepted by a single-tape TM

= Proof by construction:

= Construct a single-tape TM with 2k tracks, where
each tape of the k-tape TM is simulated by 2
tracks of basic TM

= k out the 2k tracks simulate the k input tapes

= The other k out of the 2k tracks keep track of the k
tape head positions

C.Answer:What do you know about context-free grammars?

Context-free grammars (CFGs) are used to describe context-free languages.
A context-free grammar is a set of recursive rules used to generate patterns of
strings. A context-free grammar can describe all regular languages and more,
but they cannot describe all possible languages.
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A CFG is defined as a 4-tuple:

G=(V,Z,R,S) Where:

Symbo Meaning
|

v Finite set of variables (non-terminal
symbols)

z Finite set of terminals (alphabet symbols)

R Finite set of production rules of the form A
- a

S Start symbol (one of the variables in V)

= A language class larger than the class of regular
languages

= Supports natural, recursive notation called “context-
free grammar”

= Applications:
= Parse trees, compilers
= XML

Context-
free
PDA/CFG)
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In CFG, the start symbol is used to derive the string. You can derive the string by
repeatedly replacing a non-terminal by the right hand side of the production, until all

non-terminal have been replaced by terminal symbols.
Example:

L= {wcw” | w € (a, b)*}

Production rules:

1. S—aSa
2. S—bSh
3. S—¢c

Now check that abbcbba string can be derived from the given CFG.
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S = aSa

S = abSba

S =» abbSbba
S = abbcbba

A wop =

By applying the production S — aSa, S — bSb recursively and finally applying the

production S — ¢, we get the string abbebba.

4.2 Context-Free Grammars

In this section, we shall introduce context-free grammars to
generate a class of languages larger than the class of regular
languages over the same alphabet.

Definition 3: A context-free grammar(CFQG) is denoted by
G=(V, T, P, S), where

V is a finite set of variables, Se V is the start symbol,
T is a finite set of terminals and T n"'V = J, and

P is a finite set of productions or rewriting rules, each
production is of the form:

A — a, where A € Vand a € (VUT)*.
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2.
a) Define with examples: Alphabet, String, Language

% a) Definitions with Examples

1 Alphabet (%)

Definition:
An alphabet is a finite, non-empty set of symbols.

These symbols are the basic units from which strings and languages
are formed.

Notation:

The alphabet is usually denoted by X (Greek letter “Sigma”).

Example:

e >={0, 1} — binary alphabet
e 2={a, b, c} — alphabet of letters

o >={x,vy, 2z +, -, % [} — alphabet for arithmetic expressions

2)String (or Word)
Definition:
A string is a finite sequence of symbols taken from an alphabet.

Notation:
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If (Z={a, b} ):

e Some possible strings:
o a, b, ab, ba, aab, bba, etc.

e The empty string (no symbols) is denoted by € (epsilon) or
sometimes A.

Examples:

e Over (Z={0,1}):

o 010, 1110, € are strings.
e Length of a string:

o |010]=3

o lg|=0

Language
Definition:

A language is a set of strings formed from an alphabet Z that satisfies
certain rules or patterns.

In other words,

LS
where Z* is the set of all possible strings (including €) that can be
made from .

Examples:
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1. If (X ={a, b})
o (L_1={a, ab, abb} ) — a finite language
o L2={a’nb”n|n=1}={ab,aabb,aaabbb,...} — an infinite
language

2. Over (£ ={0,1})

o L={w|w has even number of 0s}

Relations Between Them
Concept Definition Example

Alphabet Set of symbols {0, 1}
(Z)

String (w) Sequence of 0101
symbols

Language Set of strings {01, 0011,
(L) 000111}

Visual Summary:

Alphabet (2): {a, b}

Strings: €, a, b, ab, ba, aab, abb, ...
Language (L): {ab, aabb, aaabbb, ...}

b) Give a regular expression for the following language B over the
alphabet (a, b). B={ww does not contain the substring aaa)
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We can describe the set of valid strings as the strings built from the alphabet V' = {a, b} which
contain at most one or two consecutive a's.

These are strings

e starting with zero or more b's:

bt
« followed by zero or more occurrences of a or aa each followed by one or more b's:
(ab™ |aab™)*
« and terminating with zero, one or two a's
(¢lalaa)
We obtain
b*(ab™ |aab™)* (g|alaa) (1)

Add-on: The regular expression (1) generates all valid words in a unique manner. In such

cases we can use it to derive a generating function

A(z) = Z anz"
n=>0
with a,, giving the number of valid words of length n.

In order to do so all we need to know is the geometric series expansion since the star operator

1
1—a

a* = (elala®|a®|---) translates to l4a+a’+a®+---=

Accordingly a™ = aa® translates to *~ and alternatives like (¢|a|aa) can be written as

1+ a+ a?.

We obtain by translating the regular expression in the language of generating functions
(and by mixing up somewhat the symbolic to provide some intermediate steps)

23 * 2
12 (l—l—z—l—z)

* ]_ 22
[ 14 +
b (ab |aab ) (e|lalaa) — 15 (1 —,

1 22+ 23\
— l—z(l—z (1+z+ 2%)
1 1
o AHETE)
T 1z
_ 1+z42°
C1—z— 22— 23
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We conclude: The number of valid words is given by the generating function A(z)

14 z14 22
1—2z—22 23
=1422442% +72° +132% +242° + 4425 + 812" + - --

A(z) =

The expansion was done with the help of Wolfram Alpha. We see that e.g. the number of
valid words of length 5 is 24.

So, out of 2° = 32 binary words of length 5 there are 8 invalid words marked blue in the table

below.

aaaaa abaaa baaaa bbaaa
aaaab abaab baaab bbaab
aaaba ababa baaba bbaba
aaabb ababb baabb bbabb
aabaa abbaa babaa bbbaa
aabab abbab babab bbbab
aabba abbba babba bbbba
aabbb abbbb babbb bbbbb

c¢)When is an expression called regular expression?

An expression is called a regular expression when it is used to describe a set of
strings (a language) that can be defined using specific rules and operators.

Formally,
<~ Aregular expression (RE) is a symbolic notation used to represent regular
languages — the languages that can be recognized by a finite automaton.

¢ In simple terms:

A regular expression is a pattern that represents a collection of strings over some
alphabet.

Definition (Formal):

Let X be an alphabet (set of symbols). The regular expressions over X are defined as
follows:
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1. Basic Regular Expressions:
o ¢ (empty set) — denotes the language containing no strings.
o ¢ (epsilon) — denotes the language containing the empty string {€}.
o a,wherea € X — denotes thelanguage {a} (a single symbol).

2. Compound Regular Expressions:
If r+ and r. are regular expressions, then:

o (11| r2) — represents union (alternation): strings from either r: or r-.

o (rir:) — represents concatenation: strings formed by joining a string
from r: with one from r..

o (r:*) — represents Kleene star: zero or more repetitions of strings from
T

“. Example:

Let X = {a, b}
Regular Describes the
Expression Language
a {"a"}
‘a b
ab "ab" }
ax {"","a", "aa", "aaa", ... }
“(a b)**

In summary:

An expression is called a regular expression if it is built using:

e symbols from the alphabet,
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e operators (union |, concatenation, and Kleene star *), and

e possibly parentheses for grouping —
and it defines a regular language that can be recognized by a finite
automaton.

* Regular Expressions

Syntacti

expressions prata/machines

Formal
classeg

anguage

3.a)Use the pumping lemma to prove that the language A={0"2n”"3n 0”"n| n>0} is not
context free.

 Regular-language pumping lemma: write w = zyz with |zy| < N, |y| > 0andVk > 0 2y¥2 € 1
» Context-free pumping lemma (used here): write s = uvwzy with [vwz| < N, |vz| > 0and Yk >
0 uvFwzry € L.

We want to show A = {02"13"0" | n. > 0} is not context-free, so use the CFL version.
Short proof (CFL pumping lemma):

1. Assume A is context-free. Let pumping length be V.

2. Choose s = 02V 13NN ¢ A (so |s| = N). By the lemma write 8 = uvwazy with
e |vwz| < N,
o |vz| >0,
s Yk =0, uvkwa:ky c A

3. Because |'vwx| < N, the substring vwz lies entirely inside one block (the first 02

13N or the

, or the
last 0V) or crosses one boundary between two adjacent blocks.

4. In every possible placement pumping (take k& = 0) changes the length(s) of at most the first or middle
or last block(s) while leaving at least one block unchanged. But every string in A must have block
lengths in ratio 2 : 3 : 1 (first : middle : last). After pumping that ratio is violated (e.g. final block stays
N while middle becomes 3N — bwith b > 1, c\ stisno longer twice the last, etc.).

0

5. Hence uv'wazy ¢ A, contradicting the lemma.

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)


http://www.onebyzeroedu.com

Therefore A is not context-free.

Regular pumping lemma (the w=xyz), note immediately that failing the regular
lemma only shows "not regular" — it does not prove not context-free.That’s why
use CFL

b)Convert the following NFA to DFA
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c) State the Pumping Lemma for regular languages.

Then, there exists a constant N > 0 (called the pumping length) such that every string w € A with |w| >

N can be written as
w = rYyz

such that the following three conditions hold:

1. y # ¢ (the string ¥ is not empty),
2. |zy| < N,
3. Forallk > 0, wykz c A

Q@ Meaning:

If a language is regular, then any sufficiently long string in the language can have a middle part y that can
be “pumped” — i.e, repeated any number of times (including 0) — and the resulting string will still belong

to the language.

@Q Use:

The pumping lemma is often used to prove thata |z J 'age is not regular by showing that no such

decomposition w = xyz can satisfy all three conditions.

Pumping Lemma provides a method to prove that certain languages are
not regular. The Pumping Lemma states that for any regular language,
there exists a length such that any string longer than this length can be
divided into three parts, and by repeating or removing the middle part,
the resulting string will also be in the language.

Extra:

Example 1

Prove that L = {a”i~2 | i = 1} is not regular.
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Assume the set L is regular. Let n be the number of states of the FA accepting the set L.

Let w = a"°. The length of w is n2, which is greater than n, the number of states of the FA
accepting L. By using the Pumping Lemma, we can write w = xyz with |x]y| € nand |y| >
0.

Take i = 2, so the string will become xy2z.
Ixy®z| = |x| + 2|y| + |z
= x| + [y| + [z] + |yl
= n® + |y|
Since |xy| n, |y| n, therefore |xy2z| n2 + n
From the previous derivations, we can write —
n? < |xy?z]| < n2 + n < (n + 1)?

Hence, |xy?z| lies between n? and (n + 1)2. They are the squares of two consecutive
positive integers. In between the squares of two consecutive positive integers, no square «
a positive integer belongs.

But a"z, where i =z 1, is a perfect square of an integer. So, the string derived from it, i.e.,
|xy?z| is also a square of an integer, which lies between the squares of two consecutive
positive integers. This is not possible.

So, xy2z € L. This is a contradiction and L is not regular.

Example 2

Prove that L = { aP | p is prime } is not regular.

Solution
Assume the set L is regular. Let n be the humber of states of the FA accepting the set L.

Let p be a prime number greater than n. Let the string w = aP, w € L. By using the Pumping
Lemma, we can write w = xyz with |[xy| < n and |y| > 0. As the string w consists of only
'a's, X, y, and z are also strings of 'a's. Let us assume that y = am forsome mwith 1 < m =<
n.

Let us take, i = p + 1.
xy'z| = |xyz| + |[yO V|
p+(G—1)lyl
(p+ (@ +1— 1)m)
= p + pm
p(1 + m)

p(1 + m) is not a prime number as it has factors p and (1 + m), including 1 and p(1 + m).
So, xy(P + 1)z ¢ L. This is a contradiction.
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Prove that L = {@a”~n b”n | n = 1} is not regular.

Solution

Assume the set L is regular. Let n be the number of states of the FA
accepting the set L.

Let w = a”n b™n, where |w| = 2”n. By the Pumping Lemma, we can write
w = xyz with |[xy| < nand |y| > O.

We want to find a suitable i so that x y™iz € L.

The string y can be one of the following —

®m vy is a string of only 'a's, so y = ak for some k > 1.
®m vy is a string of only 'b's, so y = bk for some k = 1.

®m vy is a string of both 'a's and 'b's, so, y = ak b! for some k, | = 1.

For case (i), take i = 0. As xyz = a” b", xy% z = xz will be ank b,

Ask > 1, (n — k) # n,soxy’z &€ L
For case (ii), take i = 0. As xyz = a" b", xy? z = xz will be a" bk,

Ask > 1, (n — k) # n,soxy’z € L
For case (iii), takei = 2. As xyz = a" b",

xyzz = xyyz'
We know,
xyz — a"b® = a® Kakpblpr—!
So, xyyz will be,
a® " Eakplakblbr—1 = a2 plakp

Which is not in the form a” b", so xy2 z ¢ L.

For all three cases, we find a contradiction. Therefore, L is not regular.

4.

a) Summarize the principal closure properties for regular languages.

Principal Closure Properties of Regular Languages
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A closure property is a characteristic of a class of languages (such as

regular, context-free, etc.) where applying a specific operation (like

union, intersection, concatenation, etc.) to languages within that class

results in a language that is also within the same class.

Regular languages are closed under several important operations —
meaning that if you apply these operations to regular languages, the
result is also a regular language.

Here's a summary of the main closure properties ‘-

Operation

Union

Intersection

Complement

Difference

Concatenation

Kleene Star

Reversal

Homomorphism

Inverse Homomorphism
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Description

If L1 and L are regular, then Ly U Ly is also regular.
If Ly and Lo are regular, then L1 M L+ is regular.

If L is regular, then its complement L is also regular.
If Ly and Lo are regular, then Ly — Lo is regular.

If L and Ly are regular, then L1 Ly = {zy | z € L,y €
Ly} is regular.

If L is regular, then L* = {zyz9...7, | n > 0,z; € L}is

regular.

If L is regular, then the set of all reversed strings L% is regular.

If L is regular and h is a homomorphism, then h(L) is regular.

If L is regular and h is a homomorphism, then A1 (L) is

regular.

N

Result

Regular
Regular
Regular
Regular

Regular

Regular

Regular
Regular

Regular
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Operation

Union (L: U L.)

Intersection (L N
L.)

Set Difference (L.
- L.)

Complement (=L or
2 —L)*

Concatenation

(L.L.)

Kleene Star (L*)

Kleene Plus (L')

Reversal (LR)

Homomorphism

(h(L))

AVAILABLE AT:

Close
d?

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Description

Combines all strings from both
languages. If Li and L. are regular, the
union is regular.

Contains only strings common to both
languages. Regular languages are closed
under intersection.

Contains strings in L: but not in L..
Regular languages are closed under
difference.

Contains all strings over the alphabet not
in L. Complement of a regular language
is regular.

All strings formed by taking a string from
L. followed by a string from L..

All strings formed by concatenating zero
or more strings from L.

All strings formed by concatenating one
or more strings from L (L = L-L*).

All strings of L reversed. Regular
languages are closed under reversal.

Replace symbols in strings of L according
to a homomorphism h. The result is
regular.
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Inverse Yes The set of strings mapped into L under a
Homomorphism homomorphism h. Still regular.
(h™*(L))

Substitution

Yes

Replace symbols in L with strings from
regular languages; result is regular.

Intersection with Yes Intersecting any language with a regular
a Regular language preserves regularity if the first
Language language is regular.

Union with a
Regular Language

Subset Operation

Infinite Union

Yes

X No

Union with a regular language preserves
regularity.

Determining if a language is a subset of
another does not necessarily yield a
regular language.

Infinite union of regular languages may
not be regular.

+ In short:

<

The class of regular languages is closed under all

standard language operations.

This is one of the reasons regular languages are so powerful and useful
in automata theory and compiler design.

b) Convert DFA's to regular expressions by eliminating states (using an
arbitrary example).
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Find regular expression for the following DF A-

Stepl:
- There exist multiple final states.
- So, we convert them into a single final state.

The resulting DF A is-

Now, we start eliminating the intermediate states.

First, let us eliminate state g.

¢ There is a path going from state @ to state gr via state gs.
®  So, afier eliminating state ¢ , we put a direct path from state gz to state gr having cost b.€
=b.
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Step-03:

Now, let us eliminate state gs.

There 1s a path going from state @ to state gr via state qs.
So, after eliminating state ¢ . we put a direct path from state q: to state gr having cost c.€

=cC.

Step-04:

Now, let us eliminate state gs.
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There is a path going from state ¢ to state gr via state gs.
So, afier eliminating state gs , we put a direct path from state q: to state gr having cost d.€

=d.

Now, let us eliminate state ..

® There is a path going from state g to state gr via state .
¢ So, after eliminating state ¢ , we put a direct path from state g to state gr having cost a.
(btc+d).

:m a.(btc+d)

From here,

Regular Expression = a(b+c+d)

Here’s the state elimination method in one line per step:

1. Add new start & final states with s-transitions.
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2. Select a non-start/non-final state to eliminate.

3. Update transitions: new path = incoming x (self-loop)* x
outgoing.

4. Repeat elimination until only start — final remains.

5. The resulting edge label = the DFA’s regular expression.

C)Prove that if L is a regular language over alphabet %, then L ber = z* -
L is also a regular language

If L is a regular language over alphabet - then L = X* \ L is also regular.
Proof: Let L be recognized by a DFA
A=(Q,%,0,q,F).
Then L = L(B) where B is the DFA
B =(Q,%,6,q0,Q\ F).

That is, B is exactly like A, but the accepting states of A have become the nonaccepting
states of B and vice-versa.

Then wis in L(B) iff (g0, w) is in Q \ F, which occurs iff w is notin L(A).
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Step 1: Start with DFA for L
Since L is regular, there exists a DFA

M=(Q,2,5,q0,F)

that accepts L, where:

e Q = set of states

>2\Sigmaz = alphabet

e 0O = transition function

q0= start state

e FSQ= set of final states

Step 2: Construct DFA for complement

To get L ber, define a new DFA:

MI:(QIZIBIqOIQ_F)

e Same states, alphabet, start state, and transitions

e New final states = all states that were not final in MMM
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Step 3: Justification

o Anystringw € L is accepted by M — ends in some g7 € F' — rejected by M’ because ¢ ¢ @ — F
 Anystringw ¢ Lendsinastateq ¢ F — accepted by M' because g € Q — F

Hence, M accepts exactly all strings notin L, i.e, L’ = £* — L.

Step 4: Conclusion

Since M is a DFA, L™ is regular.

5.a)Construct a context-free grammar for the following DFA:
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For each DFA state ¢ create a grammar variable 4,,.

Set the start variable S = A, where g is the DFA start state.

For every DFA transition §(p, a) = ¢ add the production A, — a 4,
For every DFA final state f add the production Ay — €.

oo wn =

If multiple transitions share a symbol, include all corresponding productions (union handled by multiple
rules).
6. Optionally remove unreachable variables and useless productions.

7. The resulting CFG generates the same language as the DFA.

b)Show that the grammar ((S), (a, b), R, S) with rules R-SaS | aSbS € is
ambiguous
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Step 1: Choose a string

Let's test the string “ab” — it can be generated in two ways.

Step 2: Derivation 1

S = aSbS = acbes = ab

Step 3: Derivation 2

S = a8 = aaSbhS = a(ab) (using S = aSbS then S = &)

Simplifying gives the same “ab” string but through a different parse structure.

Step 4: Conclusion

Since the same string “ab” can be derived using two different parse trees (derivations),

the grammar is ambiguous.

\

Hence, the grammar S — aS | aSbS | € is ambiguous.

€ Derivation 1 (using S — aSbs first)

less

String formed: a + € + b = ab
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@ Derivation 2 (using S — aS first, then S — aSbS)

less

M — N —= N = o = N

String formed: a + (a + € + b) = ab

C)Explain inverse homomorphism.

An inverse homomorphism is the process of finding all strings in an alphabet
that, when transformed by a given homomorphism, result in a string within a specific
language

Inverse homomorphism is a closure property of regular languages. It

allows us to map the input and output elements of a homomorphic

language back to the original language.
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1

We can say that if L is a regular language, its inverse homomorphism H ° is as follows:

H (L) ==z | H(x) € L}

Note: The inverse homomorphism of a regular language is also regular.

Example

Let's suppose there is a language L that has inputs in the set Z{a, b, c}, and we have

mapped it with T'{0, 1} homomorphically.

First, we determine the homomorphic images of each input symbol/alphabet. In this

case, we may take:
H(a) =0, H(b) =1 and H(c) = 01
If we take L = {0011001}, then:
H '(L) = {aabbaab, aabbac, acbaab, acbac}

We see that the inverse homomorphism of such a language may have many

translations/instances.

Note: The homomorphism of an inverse homomorphism of a language is a
subset of the original language

H(H -1(L))<L.

Inverse Homomorphisms

¥ Let h be a homomorphism and L a
language whose alphabet is the output
language of h.

v h (L) = {w | h(w) is in L}.
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Example:

Let

Z, = {a, b},
Z> = {0, 1},
and define
h(a) = 0,
h(b) — 11.

Now, let L = {011} < 33%.
We find h—1(L):
h (L) = {w < {a,b}* | h(w) = 011}
Check possible strings over {a, b}:
e h(ab) =011 = 011

e h(ba) =110 = 110 X
e h(aab) = 0011 = 0011 X

So,
N

h™ (L) = {ab}

If L is a regular language, then h-(L) is also regular.

Regular languages are closed under inverse homomorphism.

6.a)Elaborate the three operations on languages that the operations of regular
expression represent.

@ Regular Expressions Represent Three Basic Operations
on Languages

A regular expression describes a regular language using three fundamental
operations:
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Operation Regular Expression
Symbol

Union (OR)  +or U or"

juxtaposition (no
Concatenation symbol)

(JKleene Star  *

Description

Represents joining two languages
end-to-end

Represents zero or more
repetitions of a language

Union (Alternation / OR Operation)
Definition:

If (L,)and (L,) are two languages,
then their union is:

LlL_JLQZ{’IU|1UCLl{}I"wCL2}

Regular Expression Form:

If (R, ) and (R,) are regular expressions for (L, ) and (L,),
then (R, +R,) (or (R, | R,)) represents (L, U L,).

Example:

e (R=a+b)

e (LR)={ab})
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= |t accepts either @’ or ‘b’

2)Concatenation

Definition:

If (L,)and (L,) are two languages,
then their concatenation is:

Lng: {i[?y|13CLl: yCLg}

Regular Expression Form:

If (R,)and (R,)represent (L,)and(L,),
then ( R,R, ) represents ( L,L, ).

Example:

e (R=ab)

e (LR)={ab})

= |t accepts the string formed by ‘a’ followed by ‘b’

3 Kleene Star (Repetition)
Definition:

If (L) is alanguage,
then the Kleene closure is:

L*={eJuLUL*uUl’uU...

This means zero or more repetitions of strings from L.
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Regular Expression Form:
If (R) represents L, then (R* ) represents ( L**).
Example:

o (R=a™)

e (L(R)={e,a aq aag,....})

= |t accepts any nhumber of a’s, including none.

“2 Summary Table

Operation Symbol in Meaning Example RE
RE
Union +, U," Choice
between
strings
Concatenat (no Joining strings ab

ion symbol)

Kleene Star * Repetition (0 or ax

more times)

Example
Language

{ab}

{e, a, aa,
aaa, ..}

¢ In Short:

Regular expressions describe regular languages using three main

operations:
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e Union — choice between patterns
e Concatenation — sequence of patterns

e Kleene Star — repetition of patterns

b)Prove that if we add a finite set of strings to a regular language, the result is
a regular language.
Claim. If L is a reqular lanquage over alphabet ¥ and F'is a finite set of strings from ¥, then L U F'is

reqular.

We give two short, standard proofs.

Proof A — using closure properties (direct)
1. Forany single string w € ¥, the singleton language {w} is reular.
Reason: a reqular expression w (or a DFA that reads the symbols of w along a chain of states and
accepts only at the end) defines {w}.

2. Afinite set F = {wy, wy, ..., w,} is the finite union
F={w}U{w}uU-U{w,}.

Each {w;} is regular by step 1. Regular languages are closed under finite union (closure under union
follows from closure under binary union applied repeatedly).
3. Therefore F is reqular.

4. Regular languages are closed under union, so L U F'is regular (union of regular L and regular F),

This completes the proof.

\
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Proof B — constructive via DFA/NFA (induction)
1. Construct a DFA (or NFA) M, that recognizes L (exists since L is reqular).

2. Forasingle string w = ayay - - - ag, construct an NFA M, that accepts exactly w: chain gy B
q 2 qi with gy accepting.

3. To accept afinite set F' = {wl, . ,?Un}. form an NFA that has a new start state with e-transitions to
the start states of each M,,,.. That NFA accepts exactly F'. (Equivalently add n disjoint chains.)

4. To accept L U F form an NFA that has e-transitions from a new start to the start of {7, and to each
M, The resulting NFA accepts L LJ F. Converting this NFA to a DFA (subset construction) yields a DFA
for L U F.

Hence L U F'is regular.

c) Write the closure properties of regular languages  1.Union(U)

If L, and L4 are regular,

then L4 U Lo is also regular.

Example:
let L, = {a” | » > 0} and Ly = {b" | n > 0}.
Then,

LiUuLy,={a" | m=0}}u{db" | n =0} = {a",b"}

is regular.

¢ 2. Concatenation (-)

If L, and Ls are regular,
then Ly Lo = {xy | @ € Ly,y € Ly} is regular.

Example:
Ly ={a*}, Ly = {b"}

L.L, = {a"b™ | n,m > 0}
3

is regular.
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@ 3. Kleene Star ( *)

If L is regular,
w; € L,k = 0} is regular.

then L™ = {wiwsz...wp

Example:
If L = {a},
then L* = {a" | n = 0} = a~,

which is regular.

@ 4. Intersection ( n )

If Ly and L2 are regular,
then L, M Lo is regular.

Example:
L1 = (a + b)*a — all strings ending with ‘a’
L> = a(a + b)* — all strings starting with "a’

Then
N

L1 Ls = a(a+ b)fa

@ 5. Complement ()

If I. is regular,

then its complement L = 3* L is also regular.
Example:

If L. = (a + b)*a (strings ending with ‘a’),

then

L = (a+ b)*b

(strings ending with 'b") is regular.

@ 6. Difference ( — )

If L., and Lg are regular,
then 4 Lo ={w | we& Ly,w & Ls} is regular.

Example:
Ll - (Cl. } b)*, L2 = ((I. } b)*b
Then
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@ 6. Difference ( — )
If .4 and L., are regular,

then I, Lo = {w | w e Ly,w & Ls} is regular.

Example:

Ll — {a } b)*, L2 = ((I. } b)*b

(strings ending with 'a’) is regular.

@ 7. Reversal ( R)

If L is regular,
then the reversal of L, denoted L — {w® | w < L3}, is regular.

Example:
If L = {ab, baa},
then

L
LY = {ba, aab}

is regular.

€ 8. Homomorphism and Inverse Homomorphism
e Homomorphism (h):

If L is regular, then k(L) is regular.
e Inverse Homomorphism (h™"):

If L is regular, then o~ (L) is regular.

Example:
Let h(a) = 0, h(b) = 11, and L = {011}
Then i (L) = {ab} is regular.
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7.
a) Prove that the following are not regular languages:

(i) The set of strings of 0's and 1's beginning with 1, such that when
interpreted as an integer, that integer is a prime.

(ii) The set of strings of the form 0 il j such that the greatest common
divisor of i and j is 1.

(i) Ly = { binary strings that start with 1 and represent a prime number} — not regular
(Pumping Lemma sketch)

1. Suppose L is regular. Let p be the pumping length from the Pumping Lemma.

2. Pick a prime g so large that its binary representation w begins with 1 and [w| > p (there are infinitely
many primes so we can).

3. By the Pumping Lemma write w = zyz with |zy| < p, [y| > 1,and zy*2 € L forall k > 0. Note y

lies inside the first |w| bits, so pumping changes the numerical value in a controlled, linear-in-k way:
ny =val(zytz) = A- 2D 4 B

for some integers A, B, t (here t = |y|). Thus {ny,} 1~ is an arithmetic-type progression in k (values
differ by a fixed positive increment when k changes).

4. Any such infinite progression of integers contains composite numbers (one can choose k so that ny is
divisible by some fixed small prime). Hence for some k the pumped string zy" 2 represents a composite
number and so is not in L.

5. This contradicts the Pumping Lemma requirement that :rykz € L for all k. Therefore Ly is not regular.
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(ii) Ly = {017 | ged(i, j) = 1} — not regular (Myhill-Nerode / distinguishability)
1. Foreachn > () consider the prefix u,, = 0". We will show the infinitely many u,, are pairwise
distinguishable — which by Myhill-Nerode implies non-regularity.
2. Take m # n. Choose a prime p that divides one of m, n but not the other (such a prime exists).
Without loss assume p | m and p { n.
3. Use the suffix s = 17. Then:
o ged(m,p) > p > 1sou,s=0"1"¢ L,
e ged(n,p) = 1sou,s =0"17 € L.
Thus ., and u,, are distinguishable by the same suffix s.
4. Since this works for any distinct m, n, there are infinitely many pairwise distinguishable prefixes 0”. By

Myhill-Nerode the language L is not regular.

Final summary (one-line each)
* (i) Pumping an appropriately long binary prime yields an arithmetic family of values; some pumped
member is composite — contradiction, so L is not regular.
o (i) For prefixes 0™ and 0" choose a prime dividi J e but not the other; the suffix 1” distinguishes

them; infinitely many distinguishable prefixes — Ly not reqular.
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b) State the properties of a parse tree. Construct a parse tree for the
following string:S->S S +|SS*|a

Properties of a parse tree (brief)

1. Root is the start symbol (here s).

2. Interior nodes are nonterminals; leaf nodes are terminals (or €).

3. The children of a nonterminal correspond (in order) to the symbols of the right-hand side of a
production used to expand that nonterminal.

4. The yield (frontier) — the left-to-right concatenation of the leaves — equals the derived terminal string.

5. The tree encodes a specific derivation; different parse trees mean different derivations (and show
ambiguity if more than one parse tree exists for the same string).

6. A parse tree is finite and its depth equals the maximum length of derivation steps along any branch.

Grammar

§+8854+]858+%|a

(This is a postfix-expression style grammar: two subexpressions followed by + or *, or the terminal a )

Construct a parse tree for the string aa+a*

| will build a leftmost derivation and the corresponding parse tree. The target string is the postfix aa+a*.

Leftmost derivation

Css @ Copy codi
5

=568 % (use S+ 55 %)

= (SS5+4)s* (expand the leftmost S by S » S S +)

= (aa+)s* (replace the leftmost two S by a, a)

= (aa+)aft (replace the remaining s by a)

Yield (concatenate leaves left—right): a a + a * — aa+a*.
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VAR BN

SN

=

I I
S 5 + a
I 1
a a

More clearly (each production shown as children in order):

- Root: s
e left child: s
e |left child: 5 — leaf a
= middle child: s — leaf a
» right child: terminal +
- middle child (right child of rcot before =* ): s — leaf a

= rightmost child of root: terminal =

Yield check: leaves left-to-right = a a + a = = aa+a* (matches).

c) Prove that every language defined by a regular expression is also
defined by a finite automata.

Every language defined by a regular expression is also defined by a finite automaton.

B Suppose L = L(R) for a regular expression R. We show that L = L(E) for
some e — NFA E with
1. Exactly one accepting state
2. No arcs into the initial state
3. No arcs out of the accepting state

B The proof is by structural induction on R, following the recursive definition of
regular expressions.
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Basis
The basis of the construction of fsa from regular expressions:

o -5
D <==>}
|+ - =y}

1. Expression e: the language of the FSA is {¢}.
2. Expression 0: @) is the language of FSA.
3. Expression a: the language of the FSA is {a}.

All these automata satisfies the three initial conditions

Induction
The inductive step of the construction of fsa from regular expressions

B = ——
—=5 " Oﬂ% . @)

The expression is R + S for some smaller expressions R and S.

The expression is RS for some smaller expressions R and S.

The expression is R* for some smaller expression R.

N2

The expression is (I?) for some smaller expression 3.

8.

a) State formal definition of a finite automata. Give an example

Finite automata are abstract machines used to recognize patterns in input
sequences, forming the basis for understanding regular languages in

computer science.
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e Consist of states, transitions, and input symbols, processing each
symbol step-by-step.

e If ends in an accepting state after processing the input, then the
input is accepted; otherwise, rejected.

e Finite automata come in deterministic (DFA) and
non-deterministic (NFA), both of which can recognize the same
set of regular languages.

e Widely used in text processing, compilers, and network protocols.

14 I In | Input
Automata
¢ States of
Automata
L R On
01 | ©2 On | Output

Formally, a finite automaton is a 5-tuple:
M = (Q? 2151 fImF)

where:
1. Q — A finite set of states.
2. £ — A finite set called the input alphabet.

3. & — The transition function,
O < E — Q

(defines the next state for each pair of current state and input symbol).
4. qo — The start state, where gy = Q.
5. F — A set of accepting (final) states, where F' T ).
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1. Deterministic Finite Automata (DFA)

A DFA is represented as {Q, 3, g, F, 8}. In DFA, for each input symbol, the
machine transitions to one and only one state. DFA does not allow any
null transitions, meaning every state must have a transition defined for

every input symbol

Example:

Construct a DFA that accepts all strings ending with 'a’.
Given:

Z ={a, b},

Q ={q0, g1},

F={al}

Fig 1. State Transition Diagram for DFA with 2 = {a, b}

State\svmbol a b
g0 91 40

a1 dq1 4o

In this example, if the string ends in 'a', the machine reacu; state gql, which is an accepting state.

2) Non-Deterministic Finite Automata (NFA)

NFA is similar to DFA but includes the following features:
e [t can transition to multiple states for the same input.
e [t allows null (€) moves, where the machine can change states

without consuming any input.
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Example:

Construct an NFA that accepts strings ending in 'a'.

Given:

2 ={a, b},

Q ={q0, g1},
F={ql}

e } .H

Fig 2. State Transition Diagram for NFA with 2 = {a, b}

State Transition Table for above Automaton,

State\Symbol a b
a0 {ao.a1} ao
a1 P P

In an NFA, if any transition leads to an accepting state, tu;tring is accepted.

b) Consider the regular expression (a(cd)*b)*

(i) Find a string over {a, b, c, d}A4 which matches the expression.

(i) Find a string over {a, b, ¢, d}A4 which does not match the expression

(i) A string over {a, b, c, d}*4that matches the regular expression (a(cd)*b)* is
acdb.

(i) A string over {a, b, c, d}"4that does not match the regular expression
(a(cd)*b)* is abed.
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Regex: (a(cd)*b)*. Each block ba(cd)*k has length 2+2k (even, =2). A length-4 string

can be either one block with k=1 or two blocks with k=0

(i) Matches: acdb
Reason: acdb = a-(cd) -b (one block with k=1).

(i) Does not match: aabb
Reason: any block must begin with a and end with b and the middle must be
repetitions of cd; aabb cannot be decomposed into such blocks (neither aabb =

a(cd)”*k b noras concatenation of ab-style blocks because aa / bb are invalid).

C)Build an e-NFA for the following language:

L ={w | w is empty, or if non-empty will end in 011}

L ={w | wis empty, or if non-empty will end in 01}
0 1 m g-closure of a state q,
(a0){a,) ECLOSE(q), is the set
of all states (including
itself) that can be
reached from q by
5 |0 1 repeatedly making an

g 1o 1o |w.apl— ECLOsE@)  arbitrary number of -

do (@9 |{a) |{a} <—+— EcLosE@, transitions.
a4 g {az} {a} 4— ECLOSE(qy)

*q, 7] o {9} ] ECLOSE(qy) 3
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|0 simulate any transition:
Step 1) Go to all immediate destination states.
Step 2) From there go to all their e-closure states as well.

* Example of an e-NFA

L ={w | wis empty, or if non-empty will end in 01}

0,1
D . 1 i Simulate for w=101:
- 9
start PN
QO’ qD
1‘1/ 1\1{
B 0 1 b do
£ X 0]
— g, |8 |8 | Qe TO-OSEED a
do {doai) |fa | {d0} «f— ECLOSE(qp) 1
91 % {a;) | {a4) 92
P 2 %) {2}
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