
1.a) What is Automata Theory? Describe the applications of Finite Automata.

Here is the answer in a clear, exam-friendly format:

a) What is Automata Theory?

Automata Theory is a branch of theoretical computer science that studies
abstract machines (automata) and the problems they can solve.​
 It provides mathematical models for understanding computation,
languages, and algorithms.

It provides a formal framework for understanding the fundamental capabilities and
limitations of computation by analyzing mathematical models of how machines
process information, such as symbols and strings, according to a set of rules.

In simple words:

👉 Automata Theory deals with machines that read inputs and decide
whether the input is acceptable or not.​
 These machines help us formally analyze how computers and programs
work.

Applications of Finite Automata (FA)

Finite Automata are widely used because they are simple and efficient. Here
are the key applications:

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

1. Lexical Analysis in Compilers

●​ FA is used to identify tokens such as keywords, identifiers, operators,
numbers.​

●​ Every lexical analyzer uses Deterministic Finite Automata (DFA).​

2. Pattern Matching / String Searching

●​ Text editors (e.g., Find and Replace), search engines use FA to match
patterns quickly.​

●​ Regular expression engines internally use automata.​

3. Network Protocol Design

●​ Communication protocols are modeled using automata to ensure
correct sending/receiving sequences.​

4. Software for Text Processing

●​ Spell checkers, text validation tools, DNA sequence analysis use finite
automata.​

5. Hardware Circuits / Control Systems

●​ Digital circuits, traffic lights, and control units are modeled as state
machines.​

●​ Finite automata represent different operational states.​

6. Input Validation

●​ FA is used to check if an input string is valid, such as:​

○​ Valid email format​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

○​ Valid mobile number​

○​ Valid password rules​

7. Robotics and AI State Machines

●​ Robots use automata to decide actions based on current states and
inputs.​

8. Natural Language Processing (NLP)

●​ Tokenization, morphological parsing, and finite-state transducers are
used in NLP.​

One-line simplified list (as you asked earlier):

1.​ Lexical analysis in compilers.​

2.​ Pattern matching and text searching.​

3.​ Network protocol modeling.​

4.​ Digital circuit and control system design.​

5.​ Input validation in software.​

6.​ Speech and NLP processing.​

7.​ Robotics finite-state control.​

b) Explain the work of lexical analyzer with an on/off switch.

Here is the answer in a clear, simple, exam-friendly way, using the ON/OFF
switch analogy.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

b) Explain the work of a Lexical Analyzer
using an ON/OFF switch analogy
A lexical analyzer (also called lexer or scanner) is the first phase of a
compiler.​
 Its main job is to read a program’s source code character by character
and convert it into tokens such as:

●​ identifiers​

●​ keywords​

●​ numbers​

●​ operators​

●​ punctuation​

⭐ Explanation using ON/OFF switch analogy

Think of a lexical analyzer as an ON/OFF switch–based machine (a finite
automaton):

🔵 1. The switch starts in OFF state

●​ Initially, the lexical analyzer is in a starting state (OFF).​

●​ It has not recognized any token yet.​

🔵 2. When a character comes, the switch turns ON

●​ When the first character is read, the machine turns ON and moves to a
new state.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ If the character is a letter → it starts building an identifier/keyword.​

●​ If the character is a digit → it starts building a number.​

●​ If it is a symbol → it detects an operator or punctuation.​

🔵 3. The switch remains ON while characters form a valid token

●​ The lexical analyzer continues reading characters one by one.​

●​ As long as they belong to the same token, the machine stays ON and
extends the token.​

Example:​
 Input: int

●​ Read i → switch ON → identifier state​

●​ Read n → continue ON​

●​ Read t → continue ON​

🔵 4. The switch turns OFF when the token ends

●​ When a character is found that cannot be part of the current token (like
a space, operator, or newline),​
 the lexical analyzer turns OFF and finalizes the token.​

Example:​
 int x;​
 After reading int, the space turns the switch OFF, and the token “int
(keyword)” is produced.

🔵 5. The switch turns ON again for the next token

●​ Now it starts reading the next token (x, then ;) the same way.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

⭐ Summary (Exam-friendly 5 lines)

●​ A lexical analyzer reads source code character by character.​

●​ Using a finite automaton (like an ON/OFF switch), it switches ON when
a valid token starts.​

●​ It stays ON while characters form a valid token.​

●​ It switches OFF when the token ends and outputs the token.​

●​ Then it turns ON again to process the next token.​

c) The Chomsky Hierarchy is a containment hierarchy of classes of
formal languages. Describe with suitable figure(s).

The Chomsky Hierarchy, proposed by Noam Chomsky (1956), classifies
formal languages into four types based on the power of their grammars and
the machines that recognize them.

It is a containment hierarchy, meaning:

👉 Type-3 ⊆ Type-2 ⊆ Type-1 ⊆ Type-0

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Higher types are more powerful and can generate more complex languages.

1. Type–0: Unrestricted Grammars
●​ Most powerful grammar.​

●​ Productions have no restrictions.​

●​ Recognized by Turing Machines.​

●​ Can describe any computable language.​

Example:

α → β (α and β can be any combination of terminals & non-terminals)

2. Type–1: Context-Sensitive Grammars
(CSG)

●​ Productions are of the form:​
 αAβ → αγβ, where |γ| ≥ 1 (length increases or stays same).​

●​ Recognized by Linear Bounded Automata (LBA).​

●​ Used in natural language modeling and some programming constructs.​

3. Type–2: Context-Free Grammars (CFG)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ Productions of the form:​
 A → γ​

●​ Recognized by Pushdown Automata (PDA).​

●​ Used in programming languages, syntax analysis, expression
parsing.​

4. Type–3: Regular Grammars
●​ Productions of the form:​

 A → aB or A → a​

●​ Recognized by Finite Automata (FA).​

●​ Used in lexical analysis, text search, pattern matching.​

⭐ Chomsky Hierarchy – Containment
Diagram (Very Important Figure)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Draw this in your exam:

+---+

| Type–0: Unrestricted Languages |

| (Recognized by Turing Machine) |

| +-----------------------------------+ |

| | Type–1: Context-Sensitive | |

| | (Linear Bounded Automata) | |

| | +---------------------------+ | |

| | | Type–2: Context-Free | |

| | | (Pushdown Automata) | |

| | | +------------------+ | |

| | | | Type–3: Regular | |

| | | | (Finite Automata)| |

| | | +------------------+ |

| | +---------------------------+ |

| +-----------------------------------+ |

+---+

You can also draw a simple nested-circle figure:

Nested Circle Figure

Type–0 (Unrestricted)

 └── Type–1 (Context-Sensitive)

 └── Type–2 (Context-Free)

 └── Type–3 (Regular)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

⭐ Short Exam Summary (5–6 lines)
●​ The Chomsky Hierarchy classifies formal languages into four types

based on grammatical restrictions and computational power.​

●​ Type-0: Unrestricted grammars (Turing Machines).​

●​ Type-1: Context-Sensitive grammars (Linear Bounded Automata).​

●​ Type-2: Context-Free grammars (Pushdown Automata).​

●​ Type-3: Regular grammars (Finite Automata).​

●​ It is a containment hierarchy:​
 Regular ⊆ Context-Free ⊆ Context-Sensitive ⊆ Unrestricted.​

Here is a clear, simple, exam-friendly explanation of Theorems, Lemmas,
and Corollaries, exactly suitable for short/long questions.

d) Analyze the terms: Theorems,
Lemmas, and Corollaries
In mathematics and theoretical computer science, results are organized using
theorems, lemmas, and corollaries to make proofs structured and easy to
understand.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

1. Theorem
Definition:

A theorem is a major, important statement that has been logically proven
using axioms, definitions, and previously established results.

Characteristics:

●​ Central and significant result.​

●​ Often requires a detailed proof.​

●​ Widely applicable and meaningful.​

Example:

“The intersection of two regular languages is regular.”

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

2. Lemma
Definition:

A lemma is a supporting result—a small, auxiliary statement proved mainly to
help establish a theorem.

Characteristics:

●​ Not the main result, but simplifies the proof of a theorem.​

●​ Breaks down a complex proof into smaller pieces.​

●​ Often easier to prove than the theorem itself.​

Example:

A lemma used inside the proof of the Pumping Lemma for regular languages.

3. Corollary
Definition:

A corollary is a result that follows directly from a previously proven theorem,
usually with little or no additional proof.

Characteristics:

●​ Immediate consequence of a theorem.​

●​ Supports, extends, or gives a quick application of a theorem.​

●​ Simple and short.​

Example:

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

From the theorem “Every DFA has an equivalent NFA,” a corollary is:​
 “Every regular language can be accepted by an NFA.”

Summary (5 lines for exam)
●​ A theorem is a major proven statement and the main result.​

●​ A lemma is a smaller supporting result used to help prove a theorem.​

●​ A corollary is an immediate consequence derived from a theorem.​

●​ Lemmas → help prove Theorems → give Corollaries.​

●​ These terms make proofs structured, logical, and easier to understand.​

2.a) Describe the basic functionalities of pumping lemma.

The Pumping Lemma is a fundamental property of regular languages that
helps us understand their structure. Its basic functionalities are:

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

1. To prove a language is not regular

●​ The main use of the pumping lemma is to show that a language is not
regular by contradiction.​

●​ If a language fails to satisfy the pumping lemma, then it cannot be
regular.​

2. To describe a repetitive structure in long strings

●​ It states that any sufficiently long string in a regular language can be
divided into three parts (x, y, z) such that:​

○​ The middle part y can be repeated ("pumped") any number of
times (0,1,2, …).​

○​ The resulting string will still be in the language.​

3. To express the idea of finite memory of finite automata

●​ Pumping lemma captures the fact that a finite automaton has limited
states.​

●​ If a string is longer than the number of states, it must repeat states —
creating a loop that can be pumped.​

4. To provide a necessary condition for regularity

●​ If a language is regular, it must satisfy the pumping lemma.​

●​ But satisfying the lemma does not guarantee regularity — it’s a
necessary but not sufficient condition.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Short 4–5 line exam answer (very easy)

●​ The pumping lemma provides a property that all regular languages
must satisfy.​

●​ It says long strings can be split into three parts x,y,zx, y, zx,y,z where y
can be repeated any number of times.​

●​ This shows the repetitive loop behavior of finite automata.​

●​ It is mainly used to prove that certain languages are not regular by
showing they violate this property.​

b) Use the pumping lemma to prove that the language is not context free.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

c) Define push down automata with example.

A Pushdown Automaton (PDA) is a type of automaton that uses a stack as an additional
memory structure. It is an extension of Finite Automata (FA) that allows it to recognize a
broader class of languages — specifically, context-free languages (CFLs).

A Pushdown Automaton (PDA) is a type of automaton that uses a stack in addition to its
finite control.​
 It is more powerful than a Finite Automaton (FA) but less powerful than a Turing Machine.

PDA is mainly used to recognize Context-Free Languages (CFLs).

Formal Definition:

A PDA is defined as a 7-tuple:M=(Q,Σ,Γ,δ,q0​,Z0​,F)

Where:

S
y
m
b
o
l

Meaning

Q Finite set of states

Σ Input alphabet

Γ Stack alphabet

δ Transition function: δ(q, a, X) → (p, γ) where: – q = current state – a =
current input symbol (or ε) – X = top of stack symbol – γ = string to
replace X on stack

q
₀

Start state

Z
₀

Initial stack symbol

F Set of accepting (final) states

Working Principle:

●​ PDA reads input from left to right.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ It can push or pop symbols on the stack.​

●​ The stack provides memory, allowing PDA to recognize patterns like matching
parentheses.​

●​ PDA can accept input by:​

1.​ Final state, or​

2.​ Empty stack.​

Diagram (conceptually):
Input Tape → a b b a
Stack → Z0 ↓
States → q0, q1, qf

Transition example:

δ(q0, a, Z0) = (q1, AZ0)
δ(q1, b, A) = (q1, ε)

Meaning:

●​ When reading a, push A on stack.​

●​ When reading b, pop A from stack.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Example:

PDA for language:​
 [​
 L = { a^n b^n \ | \ n ≥ 0 }​
]​
 Steps:

●​ For each a, push symbol (say X) on stack.​

●​ For each b, pop one X.​

●​ Accept if stack becomes empty at end.​

The stack allows the PDA to remember an unlimited amount of information, making it
suited for languages with nested structures like parentheses.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

3.a) Describe Deductive proof. Prove that, if x is the sum of the squares of
four positive integers, then

Deductive proof is a method in which we start from known facts,
definitions, axioms, or previously proven theorems, and then use logical
reasoning to reach a conclusion.

Key features of deductive proof

●​ Moves from general statements → specific conclusion​

●​ Each step follows by logical necessity​

●​ If the premises are true, the conclusion must be true​

●​ Used in mathematics to prove theorems with certainty

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

b) Briefly explain the configuration of a TM.

A configuration of a Turing Machine describes the complete status of the
machine at any moment during its computation.​
 It tells us everything needed to continue the computation from that point.

A TM configuration consists of three main parts:

1. Current state of the TM

●​ The state in which the machine is currently operating​
 (e.g., q0,q1,q2,…)​

2. Tape contents

●​ All symbols written on the tape, including:​

○​ Input symbols​

○​ Blank symbols​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

○​ Symbols that were overwritten during computation​

3. Position of the tape head

●​ The exact location where the head is pointing or scanning a symbol.​

Representation of a configuration

A configuration is usually written as:

α , q ,β

Where:

●​ α: symbols to the left of the head​

●​ q: current state​

●​ β: current symbol under the head and the rest of the tape to the right​

c) Let x be a real number. Then prove that, [x] = [x] if and only if x is an
integer.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

d) For all n ≥ 0, prove that;

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

4.a

advantages of DFA (Deterministic Finite Automata) with examples:

Advantages of DFA

1.​ Simplicity and Determinism​
 DFA has a simple and deterministic structure, meaning for each state
and input symbol, there is exactly one next state. This makes DFA
predictable and easy to implement in software and hardware.​
 Example: A DFA that recognizes binary strings ending with 01 always
knows exactly which state to go next for every input, without ambiguity.​

2.​ Fast Recognition​
 Since DFA reads each input symbol exactly once and moves through
states deterministically, it can recognize strings in linear time O(n),
where n is the length of the input string.​
 Example: Checking if a password contains a specific pattern like abc
can be efficiently done with a DFA in one pass.​

3.​ Easy to Implement​
 DFA can be implemented using simple transition tables or arrays,
which makes it practical for programming and designing hardware
circuits.​
 Example: Lexical analyzers in compilers use DFAs to identify
keywords, operators, and identifiers.​

4.​ Closure Properties​
 DFA languages are closed under union, intersection, and
complement. This allows combining DFAs to handle more complex

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

patterns.​
 Example: A DFA for strings ending with 0 and another DFA for strings
starting with 1 can be combined to accept strings that satisfy both
conditions.​

5.​ No Backtracking Required​
 Unlike NFA (Nondeterministic Finite Automata), DFA does not need to
try multiple paths; it always has a unique next move, making it faster
and more memory-efficient for execution.​

✅ Summary Example:​
 DFA to recognize strings over {0,1} ending with 01:

●​ States: q0 (start), q1, q2 (final)​

●​ Input: 0 or 1​

●​ Transition:​

○​ q0 → 0 → q1, q0 → 1 → q0​

○​ q1 → 0 → q1, q1 → 1 → q2​

○​ q2 → 0 → q1, q2 → 1 → q0​

This DFA quickly and deterministically accepts strings ending with 01,
showing all the advantages above.

b) Construct a DFA for the following language:

Let, Σ = {0, 1}, L = {w|w is a binary string that has even number of 1s and even
number of 0s}.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

 L = { w has an even number of 1s and even number of 0s} }​
 ​
 Alphabet: sigma = {0, 1})

Idea

To track both:

●​ Even or odd number of 0s, and​

●​ Even or odd number of 1s​

DFA Diagram

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ (q_0) is the start and also the accepting state (since both counts start
at even)​

●​ Only (q_0) is accepting, since it represents even 0s and even 1s​

Final Answer: Summary

●​ States: (Q = {q_0, q_1, q_2, q_3})​

●​ Start State: (q_0)​

●​ Accepting State: ({q_0})​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ Alphabet: ({0, 1})​

●​ Transition Function: As shown in the table above​

This DFA recognizes all binary strings that contain an even number of 0s
and an even number of 1s.

b) Construct an NFA for the following: Strings where the first symbol is present
somewhere later on at least once.[6]

To construct an NFA for the language:

Strings where the first symbol is present somewhere later on
at least once

This means:

●​ The first character of the input (either 0 or 1) must reappear later in
the string.​

●​ Examples:​

○​ Accepted: 00, 0110, 1001, 010110​

○​ Rejected: 01, 10 (because the first symbol does not repeat later)​

💡 Idea:

We can design the NFA using nondeterminism:

1.​ Read the first symbol (0 or 1) and remember it using states.​

2.​ Then move through the rest of the string.​

3.​ If we find the same symbol again, accept.

States:

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ q0: Start state (before reading first character)​

●​ q1: Remember first symbol was 0​

●​ q2: Remember first symbol was 1​

●​ qf: Accepting state (once the first symbol is seen again)​

●​ qd: Dead state (optional — not always necessary in NFA)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

5.a) Build an NFA for the following language: L = {w | w ends in 101}

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

q3 is the accepting state because we have successfully read a string ending
with 101.

b) Advantages and Caveats of NFA (Nondeterministic Finite Automaton)

Advantages of NFA

1.​ Simplicity of Design:​
 Easier to design than DFA for some complex languages because
nondeterminism allows multiple choices.​

2.​ Fewer States:​
 Often requires fewer states than a DFA for the same language.​

3.​ Flexible Transitions:​
 Can use ε-transitions (moves without input), which makes modeling
certain patterns easier.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

4.​ Good for Theoretical Analysis:​
 Useful in proofs and conversions (e.g., from regex to automata).​

5.​ Expressiveness:​
 Can represent the same languages as DFA (all regular languages) but
more succinctly.​

Caveats / Disadvantages of NFA

1.​ Nondeterminism Not Directly Implementable:​
 Computers cannot directly execute nondeterministic choices; must
simulate with DFA or backtracking.​

2.​ Conversion to DFA Can Cause State Explosion:​
 Converting NFA to DFA may result in exponentially more states (subset
construction).​

3.​ Complexity in Simulation:​
 Checking acceptance requires tracking multiple paths, which can be
less efficient.​

4.​ Ambiguity in Transitions:​
 Multiple transitions for the same input can complicate analysis or
implementation.

5.​ Limited Power: Even though NFA is more flexible, it still has some
limitations and cannot handle very complex patterns or languages.

✅ Summary:

●​ Advantages: Easier design, fewer states, uses ε-moves, concise
representation.​

●​ Caveats: Harder to implement directly, possible exponential growth
when converted to DFA, multiple paths to track.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

c) Convert the NFA from Question 5(a), to DFA. L={w∣w ends in 101},Σ={0,1}​

Same like this

6.

a. necessities of explicit ε-transitions in finite automata:

1.​ Simplify NFA design – allows state changes without consuming input.​

2.​ Facilitate union of languages – connect NFAs for L1 ∪ L2 easily.​

3.​ Facilitate concatenation – connect NFAs for L1L2 without extra
symbols.​

4.​ Handle optional symbols/strings – model patterns like a? naturally.​

5.​ Enable repetition/closure – implement Kleene star (L*) easily.​

6.​ Simplify modular construction – build complex automata from smaller
pieces.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

7.​ Assist DFA conversion – ε-closure simplifies subset construction.​

8.​ Reduce number of explicit transitions – fewer edges in NFA graph.​

9.​ Allow flexible backtracking – can “try” multiple paths without input.​

b) Build an e-NFA for the following language:

L= ={w|w is empty, or if non-empty will end in 11}

c) Convert ε-NFA to DFA based on Question 6(b)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Question 6(b):

Build an e-NFA for the following language:

L= ={w|w is empty, or if non-empty will end in 11}

Same like this

7.a) What is regular expression? Describe the operations of regular
expressions.

Here’s a clear explanation:

a) What is a Regular Expression (RE)?

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

A Regular Expression (RE) is a formal way to describe a set of strings
(language) over an alphabet using symbols and operators.

●​ It is widely used in pattern matching, lexical analysis, and defining
regular languages.​

●​ Example: Over the alphabet (\Sigma = {0,1}), the RE 0*1 represents
all strings with zero or more 0s followed by a 1: 1, 01, 001,
0001…​

Operations of Regular Expressions

1.​ Union (+ or ∪)​

○​ Represents choice between two patterns.​

○​ Example: a + b represents {a, b}​

2.​ Concatenation (·)​

○​ Represents sequence of patterns.​

○​ Example: ab represents { "ab" }​

3.​ Kleene Star (*)​

○​ Represents zero or more repetitions of a pattern.​

○​ Example: a* represents { ε, a, aa, aaa… }​

4.​ Kleene Plus (+)​

○​ Represents one or more repetitions of a pattern.​

○​ Example: a+ represents { a, aa, aaa… }​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

5.​ Optional (?)​

○​ Represents zero or one occurrence of a pattern.​

○​ Example: a? represents { ε, a }​

6.​ Parentheses ()​

○​ Used for grouping to control order of operations.​

○​ Example: (a+b)c represents {ac, bc}​

Summary Example

●​ Alphabet: {0,1}​

●​ RE: (0+1)*11 → All strings over {0,1} that end with 11.

b) Prove that if L=L(A) for some DFA A, then there is a regular
expression R such that L=L(R).​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

c) Convert the following DFA to an equivalent regular Expression.

Theorem 1: Proofs in the book For every DFA A there exists a regular
expression R such that L(R)=L(A)

d) Define- i) Associativity ii) Identity and iii) Distributive Law

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

 Commutative: E+F = F+E

Associative: (E+F)+G = E+(F+G)

 (EF)G = E(FG)

 Distributive: E(F+G) = EF + EG

 (F+G)E = FE+GE

a) Regarding conversion of DFA from NFA, a bad case for the Subset
Construction is occurred. Analyze this using the Pigeonhole Principle.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

When converting an NFA (Nondeterministic Finite Automaton) to a DFA
(Deterministic Finite Automaton) using the subset construction method, the
DFA can potentially have up to 2n2^n2n states if the NFA has nnn states.

A bad case happens when this exponential blow-up actually occurs, i.e.,
when almost all subsets of NFA states are reachable in the resulting DFA.

b) Briefly describe, how we can eliminate ε- transitions?

Eliminating ε-Transitions (Short):

1.​ Find ε-closure of each state (states reachable via ε).​

2.​ Redirect transitions: for input (a), connect states through ε-closures.​

3.​ Mark a state as final if any state in its ε-closure is final.​

4.​ Remove all ε-transitions.​

✅ Result: Equivalent NFA without ε-transitions.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

c) What are the uses of ε-Transitions?

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Here’s a more extended list of uses of ε-transitions with short descriptions:

1.​ Simplify NFA construction:​

○​ Combine smaller NFAs into a bigger NFA without extra input
symbols.​

2.​ Represent alternatives (union):​

○​ For expressions like (A|B), ε-transitions connect the start state to
multiple choices.​

3.​ Handle optional symbols:​

○​ For (a?) or (a*), ε-transitions allow skipping input.​

4.​ Facilitate concatenation:​

○​ Link the end of one NFA to the start of another NFA.​

5.​ Reduce the number of transitions:​

○​ Avoid multiple direct transitions for the same input symbol.​

6.​ Intermediate/temporary transitions:​

○​ Useful during design, then removed when converting to DFA.​

7.​ Model “do nothing” moves:​

○​ Represents states that can change without consuming input.​

8.​ Ease NFA to DFA conversion:​

○​ ε-closures help systematically construct the equivalent DFA.​

9.​ Simplify handling of complex regular expressions:​

○​ Makes it easier to represent parentheses, repetition, or optional
groups.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

10.​ Enable modular NFA design:​

○​ Allows designing NFAs for sub-patterns and connecting them
using ε-transitions.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

