1.a) What is Automata Theory? Describe the applications of Finite Automata.

Here is the answer in a clear, exam-friendly format:

a) What is Automata Theory?

Automata Theory is a branch of theoretical computer science that studies
abstract machines (automata) and the problems they can solve.

It provides mathematical models for understanding computation,
languages, and algorithms.

It provides a formal framework for understanding the fundamental capabilities and
limitations of computation by analyzing mathematical models of how machines
process information, such as symbols and strings, according to a set of rules.

In simple words:

<~ Automata Theory deals with machines that read inputs and decide
whether the input is acceptable or not.

These machines help us formally analyze how computers and programs
work.

14 I In | Input
Automata
¢ States of
Automata
Q1. gym=mmmm=== In
Oy O |\ _________ O, Dutput

Applications of Finite Automata (FA)

Finite Automata are widely used because they are simple and efficient. Here
are the key applications:

AVAILABLE AT:

http://www.onebyzeroedu.com

1. Lexical Analysis in Compilers

e FA is used to identify tokens such as keywords, identifiers, operators,
numbers.

e Every lexical analyzer uses Deterministic Finite Automata (DFA).

2. Pattern Matching / String Searching

e Text editors (e.g., Find and Replace), search engines use FA to match
patterns quickly.

e Regular expression engines internally use automata.

3. Network Protocol Design

e Communication protocols are modeled using automata to ensure
correct sending/receiving sequences.

4. Software for Text Processing

e Spell checkers, text validation tools, DNA sequence analysis use finite
automata.

5. Hardware Circuits / Control Systems

e Digital circuits, traffic lights, and control units are modeled as state
machines.

e Finite automata represent different operational states.

6. Input Validation

e FA is used to check if an input string is valid, such as:

o Valid email format

AVAILABLE AT:

http://www.onebyzeroedu.com

o Valid mobile number

o Valid password rules

7. Robotics and Al State Machines

e Robots use automata to decide actions based on current states and
inputs.

8. Natural Language Processing (NLP)

e Tokenization, morphological parsing, and finite-state transducers are
used in NLP.

One-line simplified list (as you asked earlier):

1. Lexical analysis in compilers.

2. Pattern matching and text searching.

3. Network protocol modeling.

4. Digital circuit and control system design.
5. Input validation in software.

6. Speech and NLP processing.

7. Robotics finite-state control.

b) Explain the work of lexical analyzer with an on/off switch.

Here is the answer in a clear, simple, exam-friendly way, using the ON/OFF
switch analogy.

AVAILABLE AT:

http://www.onebyzeroedu.com

b) Explain the work of a Lexical Analyzer
using an ON/OFF switch analogy

A lexical analyzer (also called lexer or scanner) is the first phase of a
compiler.

Its main job is to read a program’s source code character by character
and convert it into tokens such as:

e identifiers
e keywords
e numbers
e operators

e punctuation

Explanation using ON/OFF switch analogy

Think of a lexical analyzer as an ON/OFF switch—based machine (a finite
automaton):

@ 1. The switch starts in OFF state

e |Initially, the lexical analyzer is in a starting state (OFF).

e It has not recognized any token yet.

@ 2. When a character comes, the switch turns ON

e \When the first character is read, the machine turns ON and moves to a
new state.

AVAILABLE AT:

http://www.onebyzeroedu.com

e If the character is a letter — it starts building an identifier/keyword.
e |[f the character is a digit — it starts building a number.

e Ifitis a symbol — it detects an operator or punctuation.

@ 3. The switch remains ON while characters form a valid token

e The lexical analyzer continues reading characters one by one.

e As long as they belong to the same token, the machine stays ON and
extends the token.

Example:
Input: int

e Read i — switch ON — identifier state
e Read n — continue ON

e Read t — continue ON

@ 4. The switch turns OFF when the token ends

e When a character is found that cannot be part of the current token (like
a space, operator, or newline),
the lexical analyzer turns OFF and finalizes the token.

Example:

int Xx;

After reading int, the space turns the switch OFF, and the token “int
(keyword)” is produced.

@ 5. The switch turns ON again for the next token

e Now it starts reading the next token (x, then ;) the same way.

AVAILABLE AT:

http://www.onebyzeroedu.com

tokens

Sl /\

v lexemes Lexical Syntax
i Analyzer Analyzer

B _/

request for tokens

source-code
|
|
|

Summary (Exam-friendly 5 lines)

A lexical analyzer reads source code character by character.

e Using a finite automaton (like an ON/OFF switch), it switches ON when
a valid token starts.

e |t stays ON while characters form a valid token.
e It switches OFF when the token ends and outputs the token.

e Then it turns ON again to process the next token.

c) The Chomsky Hierarchy is a containment hierarchy of classes of
formal languages. Describe with suitable figure(s).

The Chomsky Hierarchy, proposed by Noam Chomsky (1956), classifies
formal languages into four types based on the power of their grammars and
the machines that recognize them.

It is a containment hierarchy, meaning:

<~ Type-3 < Type-2 < Type-1 S Type-0

AVAILABLE AT:

http://www.onebyzeroedu.com

Higher types are more powerful and can generate more complex languages.

1. Type—0: Unrestricted Grammars
e Most powerful grammar.
e Productions have no restrictions.
e Recognized by Turing Machines.

e Can describe any computable language.

Example:

a — B (aand B can be any combination of terminals & non-terminals)

2. Type—1: Context-Sensitive Grammars
(CSG)

e Productions are of the form:
aAB — ayB, where |y| 2 1 (length increases or stays same).

e Recognized by Linear Bounded Automata (LBA).

e Used in natural language modeling and some programming constructs.

3. Type-2: Context-Free Grammars (CFG)

AVAILABLE AT:

http://www.onebyzeroedu.com

e Productions of the form:
A—y

e Recognized by Pushdown Automata (PDA).

e Used in programming languages, syntax analysis, expression
parsing.

4. Type-3: Regular Grammars

e Productions of the form:
A—-aBorA —a

e Recognized by Finite Automata (FA).

e Used in lexical analysis, text search, pattern matching.

Chomsky Hierarchy — Containment
Diagram (Very Important Figure)

http://www.onebyzeroedu.com

Draw this in your exam:

+ +

| Type—0: Unrestricted Languages |
| (Recognized by Turing Machine) |

|+ +

| | Type—1: Context-Sensitive | |

| | (Linear Bounded Automata) | |

| | + + | |
| | | Type—2: Context-Free | |

| | | (Pushdown Automata) | |

I +

| | | | Type-3: Regular | |

| | | | (Finite Automata)| |

I +

You can also draw a simple nested-circle figure:
Nested Circle Figure
Type—0 (Unrestricted)
L— Type—1 (Context-Sensitive)
L— Type—2 (Context-Free)

L— Type—3 (Regular)

AVAILABLE AT:

http://www.onebyzeroedu.com

Short Exam Summary (5-6 lines)

e The Chomsky Hierarchy classifies formal languages into four types
based on grammatical restrictions and computational power.

e Type-0: Unrestricted grammars (Turing Machines).

e Type-1: Context-Sensitive grammars (Linear Bounded Automata).
e Type-2: Context-Free grammars (Pushdown Automata).

e Type-3: Regular grammars (Finite Automata).

e Itis a containment hierarchy:
Regular & Context-Free & Context-Sensitive & Unrestricted.

Here is a clear, simple, exam-friendly explanation of Theorems, Lemmas,
and Corollaries, exactly suitable for short/long questions.

d) Analyze the terms: Theorems,
Lemmas, and Corollaries

In mathematics and theoretical computer science, results are organized using
theorems, lemmas, and corollaries to make proofs structured and easy to
understand.

AVAILABLE AT:

http://www.onebyzeroedu.com

Well, they are basically just facts: some result that has been arrived at.

¢ A Theorem is a major result
« A Corollary is a theorem that follows on from another theorem
« A Lemma is a small results (less important than a theorem)

-

We typically refer to:
= A major result as a “theorem”

= An intermediate result that we show to prove a larger result as a
“‘lemma”

= A result that follows from an already proven result as a
“corollary”

An example:

Theorem: The height of an n-node binary
free is at least floor(lg n)

Lemma: Level i of a perfect binary tree has
2' nodes.

Corollary: A perfect binary tree of height h
has 2*1-1 nodes.

1. Theorem

Definition:

A theorem is a major, important statement that has been logically proven
using axioms, definitions, and previously established results.

Characteristics:

e Central and significant result.
e Often requires a detailed proof.

e Widely applicable and meaningful.

Example:

“The intersection of two regular languages is regular.”

AVAILABLE AT:

http://www.onebyzeroedu.com

2. Lemma

Definition:

A lemma is a supporting result—a small, auxiliary statement proved mainly to
help establish a theorem.

Characteristics:

e Not the main result, but simplifies the proof of a theorem.
e Breaks down a complex proof into smaller pieces.

e Often easier to prove than the theorem itself.

Example:

A lemma used inside the proof of the Pumping Lemma for regular languages.

3. Corollary

Definition:

A corollary is a result that follows directly from a previously proven theorem,
usually with little or no additional proof.

Characteristics:

e Immediate consequence of a theorem.
e Supports, extends, or gives a quick application of a theorem.

e Simple and short.

Example:

AVAILABLE AT:

http://www.onebyzeroedu.com

From the theorem “Every DFA has an equivalent NFA,” a corollary is:
“Every regular language can be accepted by an NFA.”

Summary (5 lines for exam)

e A theorem is a major proven statement and the main result.

e A lemma is a smaller supporting result used to help prove a theorem.
e A corollary is an immediate consequence derived from a theorem.

e Lemmas — help prove Theorems — give Corollaries.

e These terms make proofs structured, logical, and easier to understand.

2.a) Describe the basic functionalities of pumping lemma.

Mot Decidable

Pumping whether the .
M Lemma Language is
Regular or not

Decided that
Language is not Regular

Pumping Lemma Test (PLT) - For Regular Language

The Pumping Lemma is a fundamental property of regular languages that
helps us understand their structure. Its basic functionalities are:

AVAILABLE AT:

http://www.onebyzeroedu.com

1. To prove a language is not regular

e The main use of the pumping lemma is to show that a language is not
regular by contradiction.

e |[f a language fails to satisfy the pumping lemma, then it cannot be

regular.

2. To describe a repetitive structure in long strings

e |t states that any sufficiently long string in a regular language can be
divided into three parts (X, y, z) such that:

o The middle party can be repeated (*pumped") any number of
times (0,1,2, ...).

o The resulting string will still be in the language.

3. To express the idea of finite memory of finite automata

e Pumping lemma captures the fact that a finite automaton has limited
states.

e |[f a string is longer than the number of states, it must repeat states —

creating a loop that can be pumped.

4. To provide a necessary condition for regularity

e If alanguage is regular, it must satisfy the pumping lemma.

e But satisfying the lemma does not guarantee regularity — it's a
necessary but not sufficient condition.

AVAILABLE AT:

http://www.onebyzeroedu.com

For a regular language L, there exists a pumping length p such that any string s with |s| > p can be split

into

s =1xYz

satisfying three conditions:

Llzy| <p

The first two parts (x and y) are within the first p characters.

2.|y| >0

The y-part is not empty (it must contain at least one character).

3.2y'z € Lforalli > 0

Pumping (repeating or removing) y any number of times must keep the new string inside the language.

Short 4-5 line exam answer (very easy)

The pumping lemma provides a property that all regular languages
must satisfy.

It says long strings can be split into three parts x,y,zx, y, zx,y,z where y
can be repeated any number of times.

This shows the repetitive loop behavior of finite automata.

It is mainly used to prove that certain languages are not regular by
showing they violate this property.

b) Use the pumping lemma to prove that the language is not context free.

A={0"1"0"n20)}

AVAILABLE AT:

http://www.onebyzeroedu.com

To prove that the language
A= {02111311071 | n> 0}

is not context-free, we will use the Pumping Lemma for Context-Free Languages.

Pumping Lemma for CFLs (Informal Statement)

If A is a context-free language, then there exists a constant p (the pumping length) such that any string

s € Awith [$| > p can be split into five parts:
§ = uvwzy
such that:
1. lowz| <p

2. |vz| > 1(ie, v or z is not empty)

3. Foralli > 0, the string uv'wz'y € A

Proof by Contradiction

Assume:

The language A is context-free.

Then by the pumping lemma, there exists a pumping length p.

Step 1: Choose a String in A
Let's pick:

s = 0%P1°PQP

Clearly, s € A, withn = p.Also, |s| = 2p + 3p + p = 6p > p, so the pumping lemma applies.

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Step 2: Split the String
The pumping lemma says:

s = uvwzry

with:
o |vwz| <p
o |uz|>1

o wv'wz'y € Aforalli >0

Step 3: Analyze vwzx

Since |[vwz| < p, the substring vwz can only span one of the following blocks (can't span all of them as
each block is = p long):

1. The first block of Os (i.e, the 027)

2. The block of 1s (i.e., the 1°7)

3. The last block of 0s (i.e., the 0F)

We handle each case to show a contradiction. ¢

Case 1: vwx is within the first block of 0s
e Pumping v and & changes the number of Os in the first block.
* New string after pumping: uv2w;r2y will have more than 2n Os in the first block, but the other blocks
won't change proportionally.
e So the string won't be of the form 027130,

e Contradiction.

Case 2: vw is within the 1s
* Pumping v and & changes the number of 1s.
e New string: number of 1s is no longer 3n, but the first and last blocks remain unchanged.
e Notin A.

* Contradiction.

Case 3: vwz is within the last block of 0s
e Pumping adds or removes Os from the last block only.
e The number of Os in the last block will not match\‘l'/‘e required 1, making the structure invalid.

* Contradiction.

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

c) Define push down automata with example.

A Pushdown Automaton (PDA) is a type of automaton that uses a stack as an additional
memory structure. It is an extension of Finite Automata (FA) that allows it to recognize a
broader class of languages — specifically, context-free languages (CFLs).

A Pushdown Automaton (PDA) is a type of automaton that uses a stack in addition to its
finite control.
It is more powerful than a Finite Automaton (FA) but less powerful than a Turing Machine.

PDA is mainly used to recognize Context-Free Languages (CFLs).

Formal Definition:

A PDA is defined as a 7-tuple:M=(Q,Z,I",6,q0,Z0,F)

Where:

S Meaning

y

m

b

o

I

Q Finite set of states

z Input alphabet

r Stack alphabet

o Transition function: 8(q, a, X) — (p, y) where: — q = current state —a =
current input symbol (or €) — X = top of stack symbol — y = string to
replace X on stack

q Start state

0

Z Initial stack symbol

0

F Set of accepting (final) states

Working Principle:

e PDA reads input from left to right.

AVAILABLE AT:

http://www.onebyzeroedu.com

e |t can push or pop symbols on the stack.

e The stack provides memory, allowing PDA to recognize patterns like matching

parentheses.
e PDA can accept input by:
1. Final state, or

2. Empty stack.

INPUT TAPE

X

Finite
Control
Unit

Diagram (conceptually):
Input Tape —abba

Stack — Z0 |
States — q0, g1, gf

Transition example:

0(q0, a, Z0) = (g1, AZO0)
0(q1, b, A) =(q1, ¢€)

Meaning:

e When reading a, push A on stack.

e When reading b, pop A from stack.

PUSH POP

Zo

STACK

AVAILABLE AT:

http://www.onebyzeroedu.com

Example:

PDA for language:

[
L={a™nb*\|\n=0}
1

Steps:

e For each a, push symbol (say X) on stack.

e Foreach b, pop one X.

e Accept if stack becomes empty at end.

The stack allows the PDA to remember an unlimited amount of information, making it
suited for languages with nested structures like parentheses.

Example: PDA for language L = {a"b" | n > 1}

This language has equal number of a's and b's — not regular but context-free.

How the PDA works

1. For each a read, push A onto stack.
2. For each b read, pop A from stack.

3. Accept if stack becomes empty after all input is processed.

Transitions
e 4(q,a,2) = (q,AZ)
e J(g,a,A) = (g, AA) — push for each ‘a’
* §(gq,b,A) = (g, €) — pop for each 'b’

e Accept when stack becomes empty.

AVAILABLE AT:

http://www.onebyzeroedu.com

Simple Example (Step-by-step for “aaabbb”)

Input: aaabbb

Step Action Stack

a push A A

a push A AA

a push A AAA

b pop A AA

b pop A A

h pop A £ (empty)

Stack empty — Accepted «

3.a) Describe Deductive proof. Prove that, if x is the sum of the squares of
four positive integers, then

X 2
- 3 ol

Deductive proof is a method in which we start from known facts,
definitions, axioms, or previously proven theorems, and then use logical
reasoning to reach a conclusion.

Key features of deductive proof

e Moves from general statements — specific conclusion
e Each step follows by logical necessity
e If the premises are true, the conclusion must be true

e Used in mathematics to prove theorems with certainty

AVAILABLE AT:

http://www.onebyzeroedu.com

Example: Deductive proof

Let Claim 1: If y24, then 2v2y?2,

Let x be any number which is obtained by adding the squares
of 4 positive integers.

Claim 2:

Given x and assuming that Claim 1 is true, prove that 2x2x?
. Proof:

) Given:x=a2+b2+c2+d?

2y Given: a=1, b=21, ¢c21, d=1

-

5 = a’21, b%21, c221, d2x1 (by 2)
T x4 (by 1 & 3)
e 22X (by 4 and Claim 1)
‘implies” or “follows” |

18

We must check whether

2% — 2?2

o Test with smallest possible values

Let

Then
r=1+1"+1"4+1"=4
Check the equation:
2* =16
4* =16

So for this specific case, the equation holds.

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

b) Briefly explain the configuration of a TM.

[Structure of TM 1}

Finite set of states]

CONTROL }Start state |
UNIT

— | Asingle halt state |

TAPE Move left or right one
HEAD cell at a time

TAPE
, A
Store input for the TM
Can be of any length
Rama Bansal _ Can read from and write on tape

)

A configuration of a Turing Machine describes the complete status of the
machine at any moment during its computation.

It tells us everything needed to continue the computation from that point.

A TM configuration consists of three main parts:
1. Current state of the TM

e The state in which the machine is currently operating
(e.g., 90,91,92,...)

2. Tape contents

e All symbols written on the tape, including:
o Input symbols

o Blank symbols

AVAILABLE AT:

http://www.onebyzeroedu.com

o Symbols that were overwritten during computation

3. Position of the tape head

e The exact location where the head is pointing or scanning a symbol.

Representation of a configuration
A configuration is usually written as:

a,q,p
Where:

e qa: symbols to the left of the head
e (: current state

e [3: current symbol under the head and the rest of the tape to the right

c) Let x be a real number. Then prove that, [x] = [x] if and only if x is an
integer.
c) Proof: |x| = [x]| iff = is an integer

We must prove the statement in two directions:

(=) If || = [x]. then x is an integer
Assume
2] — [=].

Let this common value be n.
So,

] =n and [z] = n.
By definition of floor:

n=|z| <x<n-+ 1.

AVAILABLE AT:

http://www.onebyzeroedu.com

By definition of ceiling:
n—1<z<n=/[x].
Combining both:

So

Since . is an integer, @ must also be an integer.

Thus, if floor = ceiling, x is an integer. &

(&) If z is an integer, then L-’BJ = [:ﬂ

Let ¢ = n, where n is an integer.

* The floor of an integer is the integer itself:

* The ceiling of an integer is also the integer:

Therefore,

Thus, if x is an integer, floor = ceiling. +

Final Conclusion

lz|=Jz] <= z€’Z

The floor and ceiling of a real number are equal if ane ~nly if the number itself is an integer.

d) For all n 2 0, prove that;

n ;2 _ n(n+1)2n+1)
21=1! T 6

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Proof by Mathematical Induction

We will prove that for all n. > 0:

n(n + 1)(2n + 1)

12 4 92 2 2 _
1 F3° 4 Fn 6
Step 1: Base Case (nh = 0)
Left-hand side (LHS):
0
Y it=0
i=1
Right-hand side (RHS):
0(0+1)(2-0+1) _0
; —
Thus,
LHS = RHS
« Base case is true. v
Step 2: Induction Hypothesis
Assume the formula is true for some n = k.
That is, assume:
ke

S k(k + 1)(2k + 1)

: 6

i=1

This is our induction hypothesis.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Step 3: Induction Step

We must prove that it also holds forn = k + 1:

k+1

Ejz"“ —7?

i=1
Start with:

k+1

"
> it = (Zﬁ) F(k+1)2

Use induction hypothesis:

 k(k 4+ 1)(2k + 1))
— 5 (k1)

Factor out (k + 1):

:(ku)[@l(ku)}

Bring to common denominator 6:

et) [k(zk: + 1)6| 6(k | 1)}

Expand numerator:
k(2k+1) +6(k+1) =2k* + k+ 6k +6 =2k> + Tk + 6
Factor the quadratic:
2k* + Tk + 6 = (2k + 3)(k + 2)

Thus,

Zz’zz(k 1) [(Qk | 33(3:: + 2)]

Rewrite in standard form:

(k- 1)(k+2)(2k + 3)
6

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Replace k + 1 with n:

~n(n+1)(2n +1)
6

«” Formula holds forn = k + 1.

4.a

advantages of DFA (Deterministic Finite Automata) with examples:

Advantages of DFA

1. Simplicity and Determinism
DFA has a simple and deterministic structure, meaning for each state
and input symbol, there is exactly one next state. This makes DFA
predictable and easy to implement in software and hardware.
Example: A DFA that recognizes binary strings ending with 81 always
knows exactly which state to go next for every input, without ambiguity.

2. Fast Recognition
Since DFA reads each input symbol exactly once and moves through
states deterministically, it can recognize strings in linear time O(n),
where n is the length of the input string.
Example: Checking if a password contains a specific pattern like abc
can be efficiently done with a DFA in one pass.

3. Easy to Implement
DFA can be implemented using simple transition tables or arrays,
which makes it practical for programming and designing hardware
circuits.
Example: Lexical analyzers in compilers use DFAs to identify
keywords, operators, and identifiers.

4. Closure Properties

DFA languages are closed under union, intersection, and
complement. This allows combining DFAs to handle more complex

AVAILABLE AT:

http://www.onebyzeroedu.com

patterns.

Example: A DFA for strings ending with 6 and another DFA for strings
starting with 1 can be combined to accept strings that satisfy both
conditions.

5. No Backtracking Required
Unlike NFA (Nondeterministic Finite Automata), DFA does not need to
try multiple paths; it always has a unique next move, making it faster
and more memory-efficient for execution.

"4 Summary Example:
DFA to recognize strings over {0, 1} ending with 61:

e States: g0 (start), q1, g2 (final)
e Input: B or1

e Transition:

o g8 »>0—->9gl1,g6 > 1 —>qb
o ql—->0—->91,9q1 —>1—->qg2

© g2—-0—->91,92>1—->q6

This DFA quickly and deterministically accepts strings ending with 01,
showing all the advantages above.

b) Construct a DFA for the following language:

Let, £ = {0, 1}, L ={w|w is a binary string that has even number of 1s and even
number of 0s}.

AVAILABLE AT:

http://www.onebyzeroedu.com

L = { w has an even number of 1s and even number of 0s} }

Alphabet: sigma = {0, 1})

Idea
To track both:

e Even or odd number of 0s, and

e Even or odd number of 1s

We need to remember the state of both — so we need 4 states:

State Meaning

qo Even Os, Even 1s
q1 QOdd 0s, Even 1s
q2 Even Os, Odd 1s
g3 Odd 0s, Odd 1s

State Transitions

Current State Input =0 Input =1
4o - q — a2
q1 — o — 43
g2 — 43 — 4o
g3 — g2 v —q1

DFA Diagram

AVAILABLE AT:

http://www.onebyzeroedu.com

Transition diagram:

Transition table:

& 0 1
—*A C B
B D A
C A D
D C B

e (q_0)is the start and also the accepting state (since both counts start
at even)

e Only (q_0) is accepting, since it represents even 0s and even 1s

Final Answer: Summary

e States: (Q={q_0,9.1,9.2,q_3)})
e Start State: (q_0)

e Accepting State: ({q_0})

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

e Alphabet: ({0, 1})

e Transition Function: As shown in the table above

This DFA recognizes all binary strings that contain an even number of 0s
and an even number of 1s.

b) Construct an NFA for the following: Strings where the first symbol is present
somewhere later on at least once.[6]

To construct an NFA for the language:

Strings where the first symbol is present somewhere later on
at least once

This means:

e The first character of the input (either © or 1) must reappear later in
the string.

e Examples:

o Accepted: 60,0110, 1001, 010110

o Rejected: 61, 10 (because the first symbol does not repeat later)

¢ ldea:
We can design the NFA using nondeterminism:

1. Read the first symbol (0 or 1) and remember it using states.
2. Then move through the rest of the string.

3. If we find the same symbol again, accept.

States:

AVAILABLE AT:

http://www.onebyzeroedu.com

q0: Start state (before reading first character)

g1: Remember first symbol was 6
g2: Remember first symbol was 1

qf: Accepting state (once the first symbol is seen again)

qd: Dead state (optional — not always necessary in NFA)

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

5.a) Build an NFA for the following language: L = {w | w ends in 101}

L ={w | wendsin 101}

Step 1: Understanding the language

e The strings can be anything, as long as the last three symbols are 101 .

* So, before the last 101, the NFA can read any combination of Os and 1s.

Step 2: Define states

We can define states to track the progress toward the ending 101 :

State Meaning

qo0 Start state, haven't seen anything for 1e1 yet
q1l Saw 1 (possible start of ending 1e1)

q2 Saw 10 (middle of ending 1e1)

q3 Saw 101 — final/accepting state

N

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

States

q0 = Start state
q1 = Saw 1 (possible start of ending 101)
q2 = Saw 1@

g3 = Saw 101 (accepting state)

Transition Table

Current State Input 0
q0 {q0}
ql {92}
q2 {90}
q3 {92}

Input 1

{91}

{a1}

{a3}

{91}

g3 is the accepting state because we have successfully read a string ending
with 101,

b) Advantages and Caveats of NFA (Nondeterministic Finite Automaton)

Advantages of NFA

1. Simplicity of Design:
Easier to design than DFA for some complex languages because

nondeterminism allows multiple choices.

Fewer States:

Often requires fewer states than a DFA for the same language.

Flexible Transitions:

Can use g-transitions (moves without input), which makes modeling

certain patterns easier.

AVAILABLE AT:

http://www.onebyzeroedu.com

4. Good for Theoretical Analysis:
Useful in proofs and conversions (e.g., from regex to automata).

5. Expressiveness:
Can represent the same languages as DFA (all regular languages) but
more succinctly.

Caveats / Disadvantages of NFA

1. Nondeterminism Not Directly Implementable:
Computers cannot directly execute nondeterministic choices; must
simulate with DFA or backtracking.

2. Conversion to DFA Can Cause State Explosion:
Converting NFA to DFA may result in exponentially more states (subset
construction).

3. Complexity in Simulation:
Checking acceptance requires tracking multiple paths, which can be
less efficient.

4. Ambiguity in Transitions:
Multiple transitions for the same input can complicate analysis or
implementation.

5. Limited Power: Even though NFA is more flexible, it still has some
limitations and cannot handle very complex patterns or languages.

"4 Summary:

e Advantages: Easier design, fewer states, uses e-moves, concise
representation.

e Caveats: Harder to implement directly, possible exponential growth
when converted to DFA, multiple paths to track.

AVAILABLE AT:

http://www.onebyzeroedu.com

c) Convert the NFA from Question 5(a), to DFA. L={w|w ends in 101},2={0,1}

NFA to DFA construction: Example

» L={w|wendsin 01}

NFA: DFA:
0,1
RO
[8o 0 1
d 0 1
N - A— —»[ag] [6,04] [qo]
—»% ot | {a} —»[q0] [90.a1] [90.01] [9.0]
% 2 {2} .0 — = al |0l |l
0y] @ —et—
[qﬂ!q1]
“[90.92] 0. Enumerate all possible subsets
[q1.0] 1. Determine transitions
0 2. Retain only those states

reachable from {q;}
27

Same like this

6.

a. necessities of explicit e-transitions in finite automata:

1.

Simplify NFA design — allows state changes without consuming input.
Facilitate union of languages — connect NFAs for L1 U L2 easily.

Facilitate concatenation — connect NFAs for L1L2 without extra
symbols.

. Handle optional symbols/strings — model patterns like a? naturally.

Enable repetition/closure — implement Kleene star (L *) easily.

Simplify modular construction — build complex automata from smaller
pieces.

AVAILABLE AT:

http://www.onebyzeroedu.com

7. Assist DFA conversion — ¢-closure simplifies subset construction.
8. Reduce number of explicit transitions — fewer edges in NFA graph.

9. Allow flexible backtracking — can “try” multiple paths without input.

b) Build an e-NFA for the following language:

L= ={w|w is empty, or if non-empty will end in 11}

* Example of an e-NFA

L = {w | w is empty, or if non-empty will end in 01}
0,1

D Simulate for w=101:
oo @® @

£ ,
é Y
art & \a
. a

Qo
1 l ‘w
A 0 1 %] a
E £ X 0 °
ECLOSE(q’ ’
— o = e () a
a (99 |fag | {9} —}— ECLOSE(g,) '
a, Z) {a} [{a} 2

*qz (%] %] {QQ}

€-closure of a state q,
ECLOSE(qg), is the set
of all states (including
itself) that can be
reached from q by
repeatedly making an
arbitrary number of

e-transitions.

c) Convert e-NFA to DFA based on Question 6(b)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Question 6(b):
Build an e-NFA for the following language:

L= ={w|w is empty, or if non-empty will end in 11}

i Example: e-NFA = DFA

L ={w | w is empty, or if non-empty will end in 01}

tart start
E' """" > ECLOSE un_,l'on B
Be 0 1 "‘\ aD\ 0 1
- e .
— g, @ |2 Yidoad| — doad [Naoad | a0
Qo {oan! | @ [{a) | @A) |99 | {90
q4 277 | {az} ‘{21}_ _J {0} {094} {0}
Qs) %) {92} (90,02} {9094} {90}

Same like this

7.a) What is regular expression? Describe the operations of regular
expressions.

Here’s a clear explanation:

a) What is a Regular Expression (RE)?

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

A Regular Expression (RE) is a formal way to describe a set of strings
(language) over an alphabet using symbols and operators.

e |Itis widely used in pattern matching, lexical analysis, and defining
regular languages.

e Example: Over the alphabet (\Sigma = {0,1}), the RE 0*1 represents
all strings with zero or more 0s followed by a1: 1, 01, 001,
0001..

Operations of Regular Expressions

1. Union(+or U)
o Represents choice between two patterns.
o Example:a + brepresents {a, b}
2. Concatenation (-)
o Represents sequence of patterns.
o Example: ab represents { "ab" }
3. Kleene Star (*)
o Represents zero or more repetitions of a pattern.
o Example: a* represents { €, a, aa, aaa.. }
4. Kleene Plus (+)
o Represents one or more repetitions of a pattern.

o Example: a+ represents { a, aa, aaa.. }

AVAILABLE AT:

http://www.onebyzeroedu.com

5. Optional (?)
o Represents zero or one occurrence of a pattern.
o Example: a? represents { £, a }

6. Parentheses ()
o Used for grouping to control order of operations.

o Example: (a+b)c represents {ac, bc}

Summary Example

e Alphabet: {0,1}

e RE: (6+1)*11 — All strings over {0, 1} that end with 11.

b) Prove that if L=L(A) for some DFA A, then there is a regular
expression R such that L=L(R).

Statement:

If L = L(A) for some DFA A, then there exists a regular expression R such that L = L(R).

Proof (Short Version):

. LetDFA A = (Q, %, 6, ¢y, F).
. Convert A to a Generalized NFA (GNFA):

[T~

e Transitions labeled with regular expressions.

* Add a new start and new final state.

W

. Eliminate intermediate states one by one using:

R:‘lfw = Rtj' } R-”- (R‘;T) *R'J"j

4. After all eliminations, the transition from start to final state is labeled with a single regular expression R

5. .Thus, L(A) = L(R).

Conclusion: Every DFA recognizes a regular language, so a corresponding regular expression always

exists.

AVAILABLE AT:

http://www.onebyzeroedu.com

If L = L(A) for some DFA, then there is a regular expression R such that . = L(R) O

M We are going to construct regular expressions from a DFA by eliminating states.

B When we eliminate a state s, all the paths that went through s no longer exist in
the automaton.

M If the language of the automaton is not to change, we must include, on an arc
that goes directly from ¢ to p, the labels of paths that went from some state ¢ to
state p, through s.

M The label of this arc can now involve strings, rather than single symbols (may be
an infinite number of strings).

We use a regular expression to represent all such strings.

Thus, we consider automata that have regular expressions as labels.

c) Convert the following DFA to an equivalent regular Expression.

i o [N
(,.,_) " ('_)o
e —— L R e - "{“J‘ /; i

Theorem 1: Proofs in the book For every DFA A there exists a regular
expression R such that L(R)=L(A)

DFA to RE construction

Informally, trace all distinct paths (traversing cycles only once)
from the start state to each of the final states
and enumerate all the expressions along the way

Example: 14 o 0,1
& o @
(1*) O 0*) 1 (0= 1)*
~ ~ AN ~ LY_) ~
1= 00* 1 (0O+1)*
@ Q) What is the language?
1*00*1(0+1)*

d) Define- i) Associativity ii) Identity and iii) Distributive Law

AVAILABLE AT:

http://www.onebyzeroedu.com

i) Associativity:
A binary operation * on a set is associative if the grouping of elements does not affect the result.

Mathematically:

(a*b)xc=ax(bxc) foralla,b,cin the set.
Example: Addition of numbers: (2 + 3) + 4 =2+ (3 +4) = 9.

ii) Identity:
An element € in a set is an identity element for a binary operation * if combining it with any element of the
set leaves that element unchanged.

Mathematically:

axe=exa=a forallain the set.
Example: 0 is the identity for addition (@ + 0 = a), and 1 is the identity for multiplication (a - 1 = a).

iii) Distributive Law:

A binary operation * is distributive over another operation @ if:
ax(b®c)=(a*b)® (a*c) o (b®c)*a=(b*a)® (c*a)
Commutative: E+F = F+E
Associative: (E+F)+G = E+(F+G)
(EF)G = E(FG)
Distributive: E(F+G) = EF + EG
(F+G)E = FE+GE

a) Regarding conversion of DFA from NFA, a bad case for the Subset
Construction is occurred. Analyze this using the Pigeonhole Principle.

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Correctness of subset construction

Theorem: If D is the DFA constructed
from NFA N by subset construction,
then L(D)=L(N)

s Proof:) A
= Show that &,({q,},w) = 6,(qy,W} , for all w

= Using induction on w’s length:
: I/_\et W = Xa R R
= Op({do}sxa) = Op(On(dg,X}, @) = Oy(dg,W}

A bad case where
#states(DFA)>>#states(NFA)

= L ={w | wis a binary string s.t., the ki symbol
from its end is a 1}

= NFA has k+1 states

»« But an equivalent DFA needs to have at least 2%
states

(Pigeon hole principle)

= m holes and >m pigeons
« => at least one hole has to contain two or more pigeons

ILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

When converting an NFA (Nondeterministic Finite Automaton) to a DFA
(Deterministic Finite Automaton) using the subset construction method, the
DFA can potentially have up to 2n2*n2n states if the NFA has nnn states.

A bad case happens when this exponential blow-up actually occurs, i.e.,
when almost all subsets of NFA states are reachable in the resulting DFA.

Bad Case in Subset Construction:

e Converting an NFA with n states to a DFA can produce up to 2™ DFA states.
* Reason (Pigeonhole Principle):

» Each DFA state is a subset of NFA states.

e |f fewer than 2" DFA states exist, some subsets must merge.

o Bad case: all 2™ subsets are reachable — DFA has maximum states.

Example: NFA with 3 states — DFA may need 2% = 8 states.

[llustrative Example:
e NFA with n. = 3 states: {qy, g1, ¢2}
s Possible subsets: 0, {qo}, {1}, {@2}, {90, 1}, {q0; @2}, {41, @2}, {q0, @1, @2} — 2° = 8 subsets.

* A cleverly designed NFA may reach all 8 subsets, so the DFA needs all 8 states, which is the worst-case

blow-up.

b) Briefly describe, how we can eliminate ¢- transitions?
Eliminating £-Transitions (Short):

1. Find g-closure of each state (states reachable via €).
2. Redirect transitions: for input (a), connect states through e-closures.
3. Mark a state as final if any state in its e-closure is final.

4. Remove all e-transitions.

("4 Result: Equivalent NFA without e-transitions.

AVAILABLE AT:

http://www.onebyzeroedu.com

NFA with € can be converted to NFA without g, and this NFA without £ can be converted to DFA. To do
this, we will use a method, which can remove all the € transition from given NFA. The method will be:

1. Find out all the £ transitions from each state from Q. That will be called as e-closure{gl} where
qi € Q.

2. Then &' transitions can be obtained. The &' transitions mean a e-closure on & moves.

3. Repeat Step-2 for each input symbol and each state of given NFA.

4. Using the resultant states, the transition table for equivalent NFA without € can be built.

Example:

Convert the following NFA with € to NFA without &.

b
@@

Solutions: We will first obtain e-closures of g0, g1 and g2 as follows:

States A B
—q0 {91, a2} ®
*q1 @ {02}
*g2 @ {92}

State q1 and g2 become the final state as e-closure of g1 and g2 contain the final state q2. The NFA can
be shown by the following transition diagram:

c) What are the uses of e-Transitions?

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Here’s a more extended list of uses of e-transitions with short descriptions:

1. Simplify NFA construction:

o Combine smaller NFAs into a bigger NFA without extra input
symbols.

2. Represent alternatives (union):

o For expressions like (A|B), e-transitions connect the start state to
multiple choices.

3. Handle optional symbols:

o For (a?) or (a*), e-transitions allow skipping input.
4. Facilitate concatenation:

o Link the end of one NFA to the start of another NFA.
5. Reduce the number of transitions:

o Avoid multiple direct transitions for the same input symbol.
6. Intermediate/temporary transitions:

o Useful during design, then removed when converting to DFA.
7. Model “do nothing” moves:

o Represents states that can change without consuming input.
8. Ease NFA to DFA conversion:

o e-closures help systematically construct the equivalent DFA.
9. Simplify handling of complex regular expressions:

o Makes it easier to represent parentheses, repetition, or optional
groups.

AVAILABLE AT:

http://www.onebyzeroedu.com

10. Enable modular NFA design:

o Allows designing NFAs for sub-patterns and connecting them
using e-transitions.

AVAILABLE AT:

http://www.onebyzeroedu.com

