1.a) Construct a context-free grammar for the following DFA: (6)

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

b) Show that the grammar ({S}, {a, b), R, S) with rules R = S—aS | aShS | € is
ambiguous. [4]

Step 1: Understand Ambiguity

A grammar is ambiguous if there exists at least one string in the language
that has two or more distinct parse trees (or derivations).

Step 2: Find a Candidate String

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Consider the string:w=aab

o R I ed BRA R WA W

First derivation:

1. S=aS
2. S5 = aSbS for the second Sin as ? Let's check carefully.
e Start: S

e Option1:5 = aS — as
e Sin as: S = aSbS — aasbs b ? Wait, let's make it simple.

Better candidate: aab:

Derivation 1:

1. S=aS - as

2. S = aSbS — a(as)bs

3. FirstS — € — a(a)bs — aabs
4. LastS — € — aab

Derivation 2 (Different parse tree):
1. S = aSbS - as b s

2. FirstS— as — aas

3. SecondS —-&g— aabs

4. lastS — ¢ — aab [4 ¢
Step 4: Conclusion

e The string aab has two distinct parse trees, so the grammar is
ambiguous

Ans. For grammar to be ambiguous, there should be more than one parse
tree for same string.

AVAILABLE AT:

http://www.onebyzeroedu.com

Above grammar can be written as
S — aSbS

S — bSaS

S > e

Lets generate a string ‘abab’.

So, now parse tree for ‘abab’.

Left most derivative parse tree Ol

S — aSbS
S - a€EebsS
S — a€baSbS

S 5> aebaebe

V)
<IN T
6/ l// \.\s
P

Parse Tree 01

Left most derivative parse tree 02

S — aSbS

S — abSaSbS

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

S - ab€eaSbS
S - abeaebsS
S »>abeaebe

S — abab

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

c) Does a pushdown automata have memory? Justify.[2]

Does a Pushdown Automaton (PDA) have memory?
Answer: Yes.

1. PDAs have a stack.

o A stack is like a vertical pile of boxes where you can put things on top
(push) or take things off (pop).

2. The stack remembers information.

o Unlike a simple finite automaton that “forgets” everything except its current
state, a PDA can remember many symbols in the stack.

3. Example: Language (L ={a*n b*n\midn\ge 0})
e Step 1: Read each a — push a onto the stack
e Step 2: Read each b — pop one a from the stack

e Step 3: If the stack is empty at the end — accept

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Here, the stack “remembers” how many as were read, which is why PDA has memory.
Simple takeaway:
e Finite automata — no memory except state

e PDA — memory via stack

Tape
a a [a . b | b [—— S,
—d - 1 — il | -) LLLLE J ¥
Can grow o !"Ij.:h!
L.cft Bounded Head head
Top of stack
a
. a
- Za

Stack (Memonry)
ale Processing Block

2.a) Why explicit epsilon-transitions in finite automata is important? (2)

FA with e-Transitions

= We can allow explicit e-transitions in finite
automata

= i.e., a transition from one state to another state
without consuming any additional input symbol

= Explicit e-transitions between different states
introduce non-determinism.

« Makes it easier sometimes to construct NFAs
Definition: £ -NFAs are those NFAs with at
least one expficit e-transition defined.

= £ -NFAs have one more column in their
transition table 33

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

An g-transition in a finite automaton is a move from one state to another
without consuming any input symbol.

Importance of e-Transitions (Short Version)

1. Simplifies NFA construction from regular expressions.
2. Allows branching without consuming input.

3. Supports nondeterminism efficiently.

4. Combines smaller automata into larger ones.

5. Helps in NFA — DFA conversion using e-closure.

AVAILABLE AT:

http://www.onebyzeroedu.com

b) Build an epsilon-NFA for the following language: L = \{ w is empty, or if
non-empty will end in 01}

Idea

e The language includes the empty string — use an g-transition from
start to accepting state.

e Non-empty strings must end with 81 — similar to the DFA/NFA for
ends in 01.

e Use e-transitions to handle empty string or branching.

States

e (0O: Start state
e (1: Saw a 0 that might be second-last symbol
e (2: Saw 01 — Accepting state

e Accepting state: q@ (for € / empty) and g2

Explanation:

1. e-transition from g0 — g2 allows accepting empty string.
2. For non-empty strings:
o Track last two symbols using q1 — g2.

o Accept if string ends with 91.

AVAILABLE AT:

http://www.onebyzeroedu.com

L = {w | w is empty, or if non-empty will end in 01}

0,

E

1
0

@@

0 1 0 1
O g %
—> *qY @ %] {T'0.00} — {0’00}
dy {30:94} | {0} {ao}
q, [0 {9:} {94}
‘0, a 5] {q.}

c) Convert epsilon-NFA to DFA based on Question 6(b).

i Example: e-NFA = DFA

L = {w | w is empty, or if non-empty will end in 01}

start

~—> ECLOSE union |
5 0 1 ‘ 5 0 1
) -== \ € D\\
— 9, |8 o (@] — @eat [Nead | o
@ |f%wad!|fad [fad | @ad | (@a} | {0
a4 277 | {ay} {21}_ _J {do} {o.9+} {90}
0] %) {2} {40,92} {90.94} {90}

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career

The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

3.a) Differentiate between Finite State and Turing Machines.

Topic

1. Memory

2. Computing Power

3. Tape/Input Handling

4, Structure

5. Acceptance Capability

6. Determinism

1. Usage

8. Complexity

AVAILABLE AT:

Finite State Machine (FSM)

Has finite memory (only states)

Recagnizes Regular Languages only

Reads input once, cannot modify input

Only states and transitions

Limited computation

Can be deterministic (DFA) or
nondeterministic (NFA)

Lexical analysis, pattern matching,

simple systems

Simple to design

Turing Machine (TM) O

Has infinite memory (infinite tape)

Recognizes Recursively Enumerable

Languages (most powerful model)

Can read, write, and move head left/right on

tape

Control unit + infinite tape + read/write

head

Can perform any algorithmic computation

Usually deterministic (but NTM exists)

General computation model, algorithm

simulation, computability theory

Mare complex to design

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

b)Convert the following NFA to DFA

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

c) How a DFA processes strings?

Y% Steps of DFA Processing

1. Start in the initial state

The DFA always begins in a special state called the start state (qo).

2. Read the input string from left to right

The DFA reads the string one symbol at a time.

3. Move to the next state using the transition function

For each symbol, the DFA applies its transition function:
d(current state, input symbol) = next state
Because it is deterministic, there is exactly one possible next state for each (state, symbol) pair.

4. Continue until the entire string is read

The DFA keeps moving between states until all characters of the input have been processed.

5. Acceptance or Rejection

o |f the DFA ends in an accepting (final) state, the string is Accepted.

» |f it ends in a non-final state, the string is Reject.\l’

AVAILABLE AT:

http://www.onebyzeroedu.com

Regular expression: (0+1)*01(0+1)*

:L DFA for strings containing 01

» What makes this DFA deterministic? * Q={qp,91,92}
+2 ={0,1}
» start state = q,
*F ={q,}
pting - Transition table
state symbols
Po) 0 1
— Q1 Y
» What if the Iagguage allows % a9 g, a,
empty strings” B *q, a, a,

4.a) Define push down automata with an example. (2)

a) Define Pushdown Automata (PDA) with Example

A Pushdown Automaton (PDA) is a type of automaton that uses a stack as an additional
memory structure. It is an extension of Finite Automata (FA) that allows it to recognize a
broader class of languages — specifically, context-free languages (CFLs).

A Pushdown Automaton (PDA) is a type of automaton that uses a stack in addition to its

finite control.
It is more powerful than a Finite Automaton (FA) but less powerful than a Turing Machine.

PDA is mainly used to recognize Context-Free Languages (CFLs).

Formal Definition:
A PDA is defined as a 7-tuple:M=(Q,2,I,6,q0,Z0,F)

Where:

AVAILABLE AT:

http://www.onebyzeroedu.com

S Meaning

y

m

b

o

I

Q Finite set of states

)2 Input alphabet

r Stack alphabet

o Transition function: 8(q, a, X) — (p, y) where: — q = current state —a =
current input symbol (or €) — X = top of stack symbol —y = string to
replace X on stack

q Start state

0

z Initial stack symbol

0

F Set of accepting (final) states

Working Principle:

PDA reads input from left to right.
It can push or pop symbols on the stack.

The stack provides memory, allowing PDA to recognize patterns like matching
parentheses.

PDA can accept input by:
1. Final state, or

2. Empty stack.

AVAILABLE AT:

http://www.onebyzeroedu.com

INPUT TAPE

X
<

Finite
Control
Unit

Diagram (conceptually):
Input Tape —abba

Stack — Z0 |
States — q0, g1, of

Transition example:

0(q0, a, Z0) = (g1, AZ0)
o(q1, b, A) =(q1, ¢€)

Meaning:

e When reading a, push A on stack.

e When reading b, pop A from stack.

Example:

PDA for language:

[
L={a*nb*\|\n=0}

]
Steps:
e Foreach a, push symbol (say X) on stack.

e Foreach b, pop one X.

e Accept if stack becomes empty at end.

PUSH POP

Zo

STACK

The stack allows the PDA to remember an unlimited amount of information, making it suited

for languages with nested structures like parentheses.

AVAILABLE AT:

http://www.onebyzeroedu.com

b) Give pushdown automata that recognize the following languages: (5)

e (A)A ={w < {0,1}" | w contains at least three 1s }

e (BB = {w € {0,1}* | w = w?® and the length of w is odd }

Question with Solutions Part 5

1. Give pushdown automata that recognize the following languages. Give both a drawing and
6-tuple specification for each PDA.

(@) A= {w€ {0,1}*| w contains at least three 15} Answer:

:Ls—>s 1,E—>£' 1;5*5@

-,

l,e—e

—¢ 0e—e Qe—e Qe—e

We formally express the PDA as a 6-tuple (3,214, F), where
* U= lgnquqsgs)

* T={0,1}

e =01}

* iransition function & : @ x Te x Te — P(Q x I) is defined by
Input: 0 1 [5
Stack: | 0|1 3 011 € Ol1l]e

g {(g.e)l [(gzc)}
a2 {(g2.6)} [(g2.6)}
g {(gs.£}} [(ga.61}
g4 {(ga,€)} {(q4,6)}

Blank entries are @.

* g 18 the start state
“F=lqd)
Note that 4 is a regular Janguage, so the language has a DFA. We can easily convert
the DFA into a PDA by using the same states and transitions and never push nor pop
anything to/from the stack.
Y B={w€{0]1})|w= wRand the length of w is odd]} Answer:

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

0 — ¢

— 1l — ¢ y y
4"{@1}8’8 5_@ -@S’s_}‘c
A

0s — 0 00— ¢
ls — 1 1, 1— ¢

For any string www in BBB:

e Lengthis odd — |w|=2n+1 for some n=0

e The string is a palindrome — the first nnn symbols must match
the last nnn in reverse order

e There is one middle symbol that doesn’t need to match anything

Simplified PDA Operation

1. g2 (Push Phase):
o Read the first half of the string (first nnn symbols)
o Push each symbol onto the stack

2. Transition q2 — q3 (Middle):
o Non-deterministically guess the middle symbol
o Read it and don't touch the stack

3. q3 (Pop Phase):

o Read the last half (last nnn symbols)

AVAILABLE AT:

http://www.onebyzeroedu.com

o For each input symbol, pop the stack and ensure they match
(reverse order)

4. Accept if:

o The stack is back to the start symbol (empty apart from
initial marker)

o Inputis fully consumed

R B

We formally express the PDA as a 6-tuple (O,LT,d,q1,F), where

* 0= {1494}
' 3=(01)

o T'={0,1,$) (use $ to mark bottom of stack)

o transition function d : Q x Zex Tz = P(Q x T') is defined by
Input: 0 I ¢
Stack: 0]S £ 0 I § & 01 S £
0 {(09)}
0 {(,0),(gs.e) } {(@.1), (gs.¢) }
| {{Be)) L[{(ee)) {(¢e.6))

rja

Blank entries are 0.

o ¢1s the start state
' F={q)

c) Use the pumping lemma to prove that the language

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

A = {0*"1°"0™ | n > 0} is not context free.

To prove that the language
A= {021:131:0-n | n> 0}

is not context-free, we will use the Pumping Lemma for Context-Free Languages.

Pumping Lemma for CFLs (Informal Statement)

If Ais a context-free language, then there exists a constant p (the pumping length) such that any string

s € Awith |s| > p can be split into five parts:
§ = uvwzy
such that:
1. |owz| <p

2. |vz| > 1(ie, vor z is not empty)

3. Foralli > 0, the string uv'wz'y € A

Proof by Contradiction

Assume:

The language A is context-free.

Then by the pumping lemma, there exists a pumping length p.

Step 1: Choose a String in A
Let's pick:

s = 071°°0P

Clearly, s € A, withn = p. Also, |s| = 2p + 3p + p = 6p > p, so the pumping lemma applies.

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Step 2: Split the String
The pumping lemma says:

s = uvwzry

with:

o |vwz| <p

o |uz|>1

o wv'wz'y € Aforalli >0

Step 3: Analyze vwzx

Since |[vwz| < p, the substring vwz can only span one of the following blocks (can't span all of them as
each block is = p long):

1. The first block of Os (i.e, the 027)

2. The block of 1s (i.e., the 1°7)

3. The last block of 0s (i.e., the 0F)

We handle each case to show a contradiction. ¢

Case 1: vwx is within the first block of 0s
e Pumping v and & changes the number of Os in the first block.
* New string after pumping: uv2w;r2y will have more than 2n Os in the first block, but the other blocks
won't change proportionally.
e So the string won't be of the form 0271370,

e Contradiction.

Case 2: vw<z is within the 1s

* Pumping v and & changes the number of 1s.
e New string: number of 1s is no longer 3n, but the first and last blocks remain unchanged.
e Notin A

* Contradiction.

Case 3: vwz is within the last block of Os

e Pumping adds or removes Os from the last block only.
e The number of Os in the last block will not match\‘l'/‘e required 1, making the structure invalid.

* Contradiction.

Conclusion:In all cases, pumping v and x produces a string not in A,
which contradicts the pumping lemma. Therefore:A is not a context-free
language.

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Khatai Ans valo kor dewa ache pls visit this page

a) DFA for the Language:

L = { w has an even number of 1s and even number of Os} }

Alphabet: sigma = {0, 1})

Idea
To track both:

e Even or odd number of 0s, and

e Even or odd number of 1s

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

We need to remember the state of both — so we need 4 states:

State

do

qi

gz

aqs

State Transitions

Meaning

Even Os, Even 1s

Odd 0s, Even 1s

Even Os, Odd 1s

QOdd 0s, Odd 1s

Current State Input =0 Input =1

qo0 — 41 —q2

q1 — 4o —d;3

g2 — 43 —do

g3 — g2 — a1
DFA Diagram

Transition diagram:

Transition table:

5

—_—

C

D

w0 P> @k

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

e (q_0)is the start and also the accepting state (since both counts start
at even)

e Only (q_0) is accepting, since it represents even 0s and even 1s

Final Answer: Summary

e States: (Q={q_0,9.1,9.2,9_3})

Start State: (q_0)

Accepting State: ({q_0})

Alphabet: ({0, 1})

Transition Function: As shown in the table above

This DFA recognizes all binary strings that contain an even number of 0s
and an even number of 1s.

b) Construct an NFA for the following: Strings where the first symbol is present
somewhere later on at least once.[6]

To construct an NFA for the language:

Strings where the first symbol is present somewhere later on
at least once

This means:

e The first character of the input (either 0 or 1) must reappear later in
the string.

e Examples:

AVAILABLE AT:

http://www.onebyzeroedu.com

o Accepted: 60,0110, 1601,010116

o Rejected: 01, 10 (because the first symbol does not repeat later)

¢ ldea:

We can design the NFA using nondeterminism:

1. Read the first symbol (6 or 1) and remember it using states.
2. Then move through the rest of the string.

3. If we find the same symbol again, accept.

States:

e (0: Start state (before reading first character)

g1: Remember first symbol was 6

g2: Remember first symbol was 1

gf: Accepting state (once the first symbol is seen again)

qd: Dead state (optional — not always necessary in NFA)

AVAILABLE AT:

http://www.onebyzeroedu.com

a) Prove that the following language is either regular or not.
A={www|w € {a, b} *}

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Proof (Using Pumping Lemma)

Assume, for contradiction, that A is regular.

Then by the pumping lemma, there exists a pumping length p such that
any string s € A with length = p can be pumped.

Step 1: Choose a suitable string

Let

Then pick a string from A:
s — www — aPa’a®’ = a’?

This string is clearly in A.

Step 2: Pumping lemma decomposition

According to the lemma,

§ = rYyz
with the conditions:
1. |zy| <p
2. ly| =1
3. Forallz = 0, the string
:ryiz

must still be in A (if the language is regular).

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Step 3: Analyze the structure of x, y, z

Since |zy| << p, both x and y are inside the first block of a’s:

xyz — aaPa”

Let:

- o e ak

e y — a" (wherem = 1)

- > — a:ip—k—fn

Step 4: Pumping (take i = 0)

Pump down:

;Ey[)z — gz — a:]p—-rn,

This string has fewer than p a’s in the first block.

So the new string cannot be divided into three equal blocks.

Original structure:
a’ a’ a”
Pumped-down structure:
ap‘—ﬂ’l ap‘ ap‘
Now the 3 parts are not equal.

Thus:

zy’z ¢ A

Step 5: Contradiction

The pumping lemma says the pumped string must stay in A, but it does not.

Therefore our assumption that A is regular is false.

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

b) Prove that if we add a finite set of strings to a regular language, the
result is a regular language.

If L is a regular language and F is a finite set of strings, then

LUF

is also a regular language.

Y% Proof 1 (Using Closure Properties)

This is the simplest and cleanest proof.
Step 1: Regular languages are closed under union
One of the fundamental properties of regular languages is:
If L, and Lo are regular, then L, U L5 is regular.

Step 2: Every finite set of strings is regular

A finite set of strings is regular because:

» For each string s, the language {s} can be recognized by a simple DFA.

e A finite union of these is also regular.

So a finite set
F = {31:32?'-'1Sk}

is regular, because it can be described by the regular expression:

s1 | s2| -+ | sk
Step 3: Use closure under union
Since
e [isregular, and
e F'isregular,
their union
LuUF

must also be regular.

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Y% Proof 2 (Constructive DFA-Based Proof)

(Use this if examiner expects a construction.)
Let:

e L be aregular language with DFA

M - (Q}E:‘SE Qr}:F)
e F ={sy,89,...,58;} be afinite set.

Construction idea:

For each string s;:

e Build a small DFA M; that accepts only s;.
* Take the union of all DFAs:

M N Ms - 1 M

Since finite automata are closed under union, the final automaton accepts
LU {s1,82,...,8}

Thus the union is regular. +

c) Write the closure properties of regular languages.

A closure property is a characteristic of a class of languages (such as
regular, context-free, etc.) where applying a specific operation (like
union, intersection, concatenation, etc.) to languages within that class
results in a language that is also within the same class.

Regular languages are closed under several important operations —
meaning that if you apply these operations to regular languages, the
result is also a regular language.

Here’s a summary of the main closure properties -

AVAILABLE AT:

http://www.onebyzeroedu.com

Operation Description Result

Union If Ly and L3 are regular, then Ly U Ls is also regular. Regular
Intersection If Ly and L9 are regular, then Ly N Ls is regular. Regular
Complement If L is regular, then its complement L is also regular. Regular
Difference If Ly and Ly are regular, then Ly — Ly is regular. Regular
Concatenation If Ly and Ly are regular, then LiLy = {zy |z € L,y € Regular

L} is regular.

Kleene Star If L is regular, then L* = {zyz3...x,, | n > 0,2; € L} is Regular

regular.
Reversal If L is regular, then the set of all reversed strings L is regular. Regular
Homomorphism If L is regular and h is a homomorphism, then h(L) is regular. Regular
Inverse Homomorphism If L is regular and A is a homomorphism, then (L) is Regular

regular.

N2
Close
d?
Operation Description
Union (L: U L) Yes Combines all strings from both

languages. If Li and L. are regular, the
union is regular.

Intersection (L N Yes Contains only strings common to both
L.) languages. Regular languages are closed
under intersection.

Set Difference (L. Yes Contains strings in L but not in L..
- L2) Regular languages are closed under
difference.

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Complement (—L or
> - L)*

Concatenation
(L.L.)

Kleene Star (L*)

Kleene Plus (L')

Reversal (LR)

Homomorphism

(h(L))

Inverse
Homomorphism

(h*(L))

Substitution

Intersection with
a Regular
Language

Union with a
Regular Language

AVAILABLE AT:

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Contains all strings over the alphabet not
in L. Complement of a regular language
is regular.

All strings formed by taking a string from
L. followed by a string from L..

All strings formed by concatenating zero
or more strings from L.

All strings formed by concatenating one
or more strings from L (L = L-L*).

All strings of L reversed. Regular
languages are closed under reversal.

Replace symbols in strings of L according
to a homomorphism h. The result is
regular.

The set of strings mapped into L under a
homomorphism h. Still regular.

Replace symbols in L with strings from
regular languages; result is regular.

Intersecting any language with a regular
language preserves regularity if the first
language is regular.

Union with a regular language preserves
regularity.

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Subset Operation X No Determining if a language is a subset of
another does not necessarily yield a
regular language.

Infinite Union X No Infinite union of regular languages may
not be regular.

. In short:

The class of regular languages is closed under all
standard language operations.

This is one of the reasons regular languages are so powerful and useful
in automata theory and compiler design.

a) Describe the relation between Regular Expressions (RE) and Finite
Automata.
Show with figure that they are interchangeabile.

Relation between Regular Expressions
and Finite Automata (Short & Clear)

e Regular Expressions (RE) and Finite Automata (FA) describe
the same class of languages, called Regular Languages.

e For every RE, there exists an equivalent FA that accepts the same
language.

e For every FA (DFA/NFA), there exists an equivalent RE describing
its language.

e Thus, RE and FA are equivalent and interchangeable in
expressive power.

AVAILABLE AT:

http://www.onebyzeroedu.com

Finite Automata (FA) & Regular
Expressions (Reg EX)

= To show that they are interchangeable,
consider the following theorems:
s Theorem 1: For every DFA A there exists a regular
expression R such that L(R)=L(A)

ok = Theorem 2: For every regular expression R there
exists an ¢ -NFA E such that L(E)=L(R)

g -NFA NFA

Theorem 2 \ Kleene Theorem

(Reg Ex L __DFA

Theorem 1

Theorem
DFA to RE construction

Informally, trace all distinct paths (traversing cycles only once)
from the start state to each of the final states
and enumerate all the expressions along the way

Example: 1 0 0,1
R RO
(1) 0 (O0%) 1 (O + 1)
“ = AN ~ A ~ -
1* 00* 1 (0+1)*
ﬂ Q) What is the language
1*00*1(0+1)* 1

ILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

b) Convert the following RE to e-NFA: (0+1)*01(0+1)*

Theorem
* RE to e-NFA construction

Example: (0+1)*01(0+1)*

(0+1)* 01 (0+1)*

8.b) Consider the regular expression (a(cd)*b)*

(i) Find a string over {a, b, ¢, d}A4 which matches the expression.

(i) Find a string over {a, b, ¢, d}A4 which does not match the expression

(i) A string over {a, b, c, d}*4that matches the regular expression (a(cd)*b)* is
acdb.

(i) A string over {a, b, c, d}"4that does not match the regular expression

(a(cd)*b)* is abed.

Regex: (a(cd)*b)*. Each block ba(cd)*k has length 2+2k (even, =2). A length-4 string

can be either one block with k=1 or two blocks with k=0

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

(i) Matches: acdb
Reason: acdb = a- (cd) -b (one block with k=1).

(i) Does not match: aabb
Reason: any block must begin with a and end with b and the middle must be
repetitions of cd; aabb cannot be decomposed into such blocks (neither aabb =

a(cd)*k b nor as concatenation of ab-style blocks because aa / bb are invalid).

c) Does a pushdown automata have memory? Justify.[2]

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Does a Pushdown Automaton (PDA) have memory?
Answer: Yes.

1. PDAs have a stack.

o A stack is like a vertical pile of boxes where you can put things on top
(push) or take things off (pop).

2. The stack remembers information.

o Unlike a simple finite automaton that “forgets” everything except its current
state, a PDA can remember many symbols in the stack.

3. Example: Language (L ={a*n b*n\midn\ge 0})
e Step 1: Read each a — push a onto the stack

e Step 2: Read each b — pop one a from the stack

Step 3: If the stack is empty at the end — accept

Here, the stack “remembers” how many as were read, which is why PDA has memory.

{74 Simple takeaway:

e Finite automata — no memory except state

e PDA — memory via stack

AVAILABLE AT:

http://www.onebyzeroedu.com

Slark lli,,'q m I'||:

a) Find DFA's which accepts the following languages:

(i) Strings over {a, b} ending in aa.

(i) String over {a, b} containing three consecutive a's (that is, contains
the substring aaa)

(i) All strings over {a, b} where each string of length 5 contains at least
two a's.

AVAILABLE AT:

http://www.onebyzeroedu.com

