
2016-17(4th batch)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

a) Analyze the terms: Theorems, Lemmas and Corollaries. (4)

Here’s a clear analysis of the terms Theorems, Lemmas, and Corollaries:

1. Theorem

●​ A theorem is a significant, proven statement in mathematics.​

●​ It is usually an important result that forms the backbone of a theory or provides
insight into a major concept.​

●​ Theorems are typically proven using axioms, definitions, and previously proven
theorems or lemmas.​

Example:​
 The Pythagorean Theorem states that in a right-angled triangle:​
 [a^2 + b^2 = c^2]

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

2. Lemma

●​ A lemma is a “helping theorem” — a result that is proved primarily to assist in
proving a larger or more significant theorem.​

●​ Lemmas are not usually of independent importance but are crucial for breaking down
complex proofs.​

Example:​
 A technical lemma might be used to establish properties of functions that are later used in
proving the Fundamental Theorem of Calculus.

3. Corollary

●​ A corollary is a statement that follows directly from a theorem with little or no
additional proof.​

●​ It is an immediate consequence of a theorem, often noted for clarity or completeness.​

Example:​
 From the theorem that “the sum of the angles in a triangle is 180°,” a corollary is that “each
angle of an equilateral triangle is 60°.”

Summary Table:

Term Purpose Importance

Theorem Major, central result High

Lemma Tool to assist in proving a theorem Medium (supportive role)

Corollary Immediate consequence of a
theorem

Low to Medium

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

 b) What is Automata Theory? Describe the applications of Finite Automata. (4)

Automata Theory is a branch of theoretical computer science that deals with the study of
abstract machines or mathematical models of computation (called automata) and the
computational problems that can be solved using these machines. It provides the foundation
for understanding how languages are defined and recognized by computational systems.

Central Concepts of Automata Theory:

1. Automata

Automata are abstract, mathematical models of computation that perform operations on
input strings. Types of automata include:

●​ Finite Automata (FA) – Used for recognizing regular languages.​

●​ Pushdown Automata (PDA) – Used for recognizing context-free languages.​

●​ Turing Machines (TM) – A model of general-purpose computation.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

2. Alphabets (Σ) and Strings

●​ Alphabet (Σ): A finite set of symbols.​
 Example: Σ = {0, 1}​

●​ String: A sequence of symbols from the alphabet.​
 Example: "0101" is a string over the alphabet {0, 1}.​

3. Languages

A language is a set of strings formed using the alphabet. Automata classify these languages
based on the type of grammar and machine used to recognize them:

●​ Regular Languages – Recognized by finite automata.​

●​ Context-Free Languages – Recognized by pushdown automata.​

●​ Recursively Enumerable Languages – Recognized by Turing machines.​

4. Grammar

A grammar defines the structure of a language using production rules. According to the
Chomsky hierarchy, grammars are classified into:

●​ Type-3: Regular Grammar​

●​ Type-2: Context-Free Grammar​

●​ Type-1: Context-Sensitive Grammar​

●​ Type-0: Unrestricted Grammar​

5. Transition Functions

Defines how the automaton moves from one state to another based on the input symbol. For
example:

●​ In Deterministic Finite Automata (DFA), a state and input symbol lead to exactly
one state.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ In Non-deterministic Finite Automata (NFA), they may lead to multiple possible
states.​

6. Determinism vs Non-determinism

●​ Deterministic Automata: One transition per input.​

●​ Non-deterministic Automata: Multiple possible transitions.​

●​ Both DFA and NFA recognize regular languages and are equivalent in terms of
computational power.​

7. Acceptance of a Language

An automaton accepts a string if, after processing all input symbols, it reaches a valid
accepting (or final) state.

Applications of Finite Automata (One-line each):

1.​ Lexical Analysis in Compilers: Used to identify tokens in source code like
keywords and operators.​

2.​ String Processing: Helps find and replace patterns in text.FA is used to search for
patterns in text, such as identifying keywords in a search engine or searching for
substrings in text editors.​

3.​ Spell Checkers: Checks if typed words match valid dictionary patterns.​

4.​ Artificial Intelligence (Simple AI): Models simple decision-based systems or
behavior.​

5.​ System Verification: Tests if a system performs correctly in all its states.​

6.​ Compiler Design: Used in various phases of compiler construction.​

7.​ Digital Circuit Design: Designs sequential logic circuits like Mealy and Moore
machines.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

8.​ Simple Device Control: Controls basic machines like elevators or washing
machines with defined states.​

9.​ Natural Language Processing: Recognizes patterns in text or speech for language
tools.​

c) A containment hierarchy of classes of formal languages has been classified as The
Chomsky Hierarchy. Describe with suitable figure(s). (4)

+--+
| Type-0: Unrestricted |
| (Recursively Enumerable Languages) |
| Machine: Turing Machine |
| |
| +--------------------------------------+
	Type-1: Context-Sensitive
	Machine: Linear Bounded Automaton
	+------------------------------+

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

| | | +------------------------+
			Type-3: Regular
			Machine: Finite
			Automaton
		+------------------------+	
	+------------------------------+		
+--------------------------------------+			
+--+

Each class is included inside the next, representing containment.​

Type-3 ⊆ Type-2 ⊆ Type-1 ⊆ Type-0

The Chomsky Hierarchy, developed by Noam Chomsky, organizes formal languages into a
hierarchy based on the type of grammars and machines needed to recognize them. It
consists of four levels, each more expressive than the one above it.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Levels of the Chomsky Hierarchy:

1.​ Type-0: Unrestricted Grammars​

○​ Languages: Recursively Enumerable Languages​

○​ Machine: Turing Machine​

○​ Most powerful – can express any computable language.​

2.​ Type-1: Context-Sensitive Grammars​

○​ Languages: Context-Sensitive Languages​

○​ Machine: Linear Bounded Automaton​

○​ Rules depend on context; more restricted than Type-0.​

3.​ Type-2: Context-Free Grammars​

○​ Languages: Context-Free Languages​

○​ Machine: Pushdown Automaton​

○​ Mostly used in programming language syntax, such as in compilers.​

4.​ Type-3: Regular Grammars​

○​ Languages: Regular Languages​

○​ Machine: Finite Automaton​

○​ Most restricted; often used in text processing and lexical analysis.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

2. Pushdown Automata (PDA) and Pumping Lemma

a) Define push down automata with an example. (2)

a) Define Pushdown Automata (PDA) with Example

A Pushdown Automaton (PDA) is a type of automaton that uses a stack as an additional
memory structure. It is an extension of Finite Automata (FA) that allows it to recognize a
broader class of languages — specifically, context-free languages (CFLs).

A Pushdown Automaton (PDA) is a type of automaton that uses a stack in addition to its
finite control.​
 It is more powerful than a Finite Automaton (FA) but less powerful than a Turing Machine.

PDA is mainly used to recognize Context-Free Languages (CFLs).

Formal Definition:

A PDA is defined as a 7-tuple:M=(Q,Σ,Γ,δ,q0​,Z0​,F)

Where:

S
y
m
b
o
l

Meaning

Q Finite set of states

Σ Input alphabet

Γ Stack alphabet

δ Transition function: δ(q, a, X) → (p, γ) where: – q = current state – a =
current input symbol (or ε) – X = top of stack symbol – γ = string to
replace X on stack

q
₀

Start state

Z
₀

Initial stack symbol

F Set of accepting (final) states

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Working Principle:

●​ PDA reads input from left to right.​

●​ It can push or pop symbols on the stack.​

●​ The stack provides memory, allowing PDA to recognize patterns like matching
parentheses.​

●​ PDA can accept input by:​

1.​ Final state, or​

2.​ Empty stack.​

Diagram (conceptually):
Input Tape → a b b a
Stack → Z0 ↓
States → q0, q1, qf

Transition example:

δ(q0, a, Z0) = (q1, AZ0)
δ(q1, b, A) = (q1, ε)

Meaning:

●​ When reading a, push A on stack.​

●​ When reading b, pop A from stack.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Example:

PDA for language:​
 [​
 L = { a^n b^n \ | \ n ≥ 0 }​
]​
 Steps:

●​ For each a, push symbol (say X) on stack.​

●​ For each b, pop one X.​

●​ Accept if stack becomes empty at end.​

The stack allows the PDA to remember an unlimited amount of information, making it suited
for languages with nested structures like parentheses.

 b) Give pushdown automata that recognize the following languages: (5)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

For any string www in BBB:

●​ Length is odd → ∣w∣=2n+1 for some n≥0​

●​ The string is a palindrome → the first nnn symbols must match
the last nnn in reverse order​

●​ There is one middle symbol that doesn’t need to match anything​

Simplified PDA Operation

1.​ q2 (Push Phase):​

○​ Read the first half of the string (first nnn symbols)​

○​ Push each symbol onto the stack​

2.​ Transition q2 → q3 (Middle):​

○​ Non-deterministically guess the middle symbol​

○​ Read it and don't touch the stack​

3.​ q3 (Pop Phase):​

○​ Read the last half (last nnn symbols)​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

○​ For each input symbol, pop the stack and ensure they match
(reverse order)​

4.​ Accept if:​

○​ The stack is back to the start symbol (empty apart from
initial marker)​

○​ Input is fully consumed

c) Use the pumping lemma to prove that the language

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Conclusion

In all cases, pumping v and x produces a string not in A, which
contradicts the pumping lemma. Therefore:

A is not a context-free language.

a) What is Turing Machine? Give advantages of it. (3)

1. Turing Machine (TM): Definition

A Turing Machine (TM) is a mathematical model of computation that defines an abstract
machine capable of simulating any computer algorithm.​
 It was introduced by Alan Turing (1936) and is used to describe what can be computed
and how efficiently.

Formal Definition:

A Turing Machine can be represented as a 7-tuple:M=(Q,Σ,Γ,δ,q0​,qaccept​,qreject​)

Where:

●​ Q: Set of states​

●​ Σ\Sigma: Input alphabet​

●​ Γ\Gamma: Tape alphabet (Σ⊆Γ)​

●​ δ\delta: Transition function δ(q, X) → (p, Y, D) where D ∈ {L, R} (Left or Right
movement)​

●​ q0​: Start state​

●​ q_accept: Accepting state​

●​ q_rejectq​: Rejecting state

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Working Principle:

●​ TM has an infinite tape divided into cells.​

●​ Each cell contains one symbol (from Γ).​

●​ A tape head reads/writes symbols and moves left or right.​

●​ Based on the current state and tape symbol, the transition function δ determines:​

○​ The next state,​

○​ The symbol to write, and​

○​ The direction to move.​

●​ If TM reaches q_accept, the input is accepted; if q_reject, it’s rejected.​

Diagram (conceptually):
... | 1 | 0 | 1 | 1 | _ | _ | ...
 ↑
 Tape Head

At each step:

δ(q, X) = (p, Y, D)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

means: In state q reading X → write Y, move D (L or R), and go to state p.

Example:

A TM that accepts strings with equal number of 0’s and 1’s is a non-trivial example.

Here are the advantages of Turing Machine, with each explained in one line and including
more points:

Advantages of Turing Machine (TM)

1.​ Universal Model of Computation:​
 Turing Machines can simulate any algorithm or computational process.​

2.​ Simple Yet Powerful Design:​
 Despite its basic components, a TM can model complex systems and processors.​

3.​ Foundation for Computer Science:​
 It provides the theoretical basis for understanding computation and algorithmic limits.​

4.​ Supports Infinite Memory:​
 The infinite tape allows handling arbitrarily large input sizes, unlike finite automata.​

5.​ Recognizes Recursively Enumerable Languages:​
 It can recognize languages beyond the power of context-free and regular languages.​

6.​ Flexible Variants:​
 Supports extensions like multi-tape or non-deterministic models for advanced
computation.​

7.​ Basis for Decidability and Undecidability:​
 Helps classify problems into decidable and undecidable categories.​

8.​ Can Model Real Computers:​
 Though abstract, a TM can simulate any modern computer's behavior and logic.​

9.​ Useful in Algorithm Design:​
 It provides a standard for expressing and analyzing algorithms formally.​

10.​Enables Proofs in Complexity Theory:​
 Used in proving computational complexity, NP-hardness, and other theoretical
frameworks.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

b) Construct a Turing Machine that accepts the language of palindromes over{a, b}. Also
specify the moves to trace the strings {abba},{abbaa},{aabba} (6)

Turing Machine Design (Idea):

1.​ Mark the first character (replace it with X) and remember its value.​

2.​ Move to the end of the tape and find the matching last character.​

3.​ If matching, replace it with X.​

4.​ Repeat for the next inner characters.​

5.​ If all characters are correctly matched → accept.​

6.​ If a mismatch occurs → reject.

​

The Turing machine, M is given by M = (Q, Σ, Γ, δ, q0, B, F)

Where,

​​ Q = {q0, q1, q2, q3, q4, q5, q6, q7, q8}

​​ Σ = {a, b}

​​ Γ = {a, b, B}

​​ δ ⇒ Given by the above mentioned transition diagram,

​​ q0 = {q0}

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

​​ B = {B}

​​ F = {q8}

1. Trace for abba (Palindrome)
Initial: abba
Step 1: Xbba ← Mark first 'a'
Step 2: XbbX ← Match last 'a'
Step 3: XXbX ← Mark first 'b'

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Step 4: XXXX ← Match last 'b'
Final: All Xs → ACCEPT

2. Trace for abbaa (NOT a palindrome)
Initial: abbaa
Step 1: Xbbaa ← Mark first 'a'
Step 2: XbbaX ← Match last 'a'
Step 3: XXbaX ← Mark first 'b'
Step 4: XXbaX ← Last char is 'a', but expected 'b' → REJECT

3. Trace for aabba (NOT a palindrome)
Initial: aabba
Step 1: Xabba ← Mark first 'a'
Step 2: XabbX ← Match last 'a'
Step 3: XXbbX ← Mark next 'a'
Step 4: XXbbX ← Last is 'b' but expected 'a' → REJECT

c) What is meant by a halting problem in a Turing Machine? Explain with an
example. (3)

The halting problem is the question of determining whether a given Turing
Machine will eventually halt (stop) or run forever on a given input.

Alan Turing proved that a general solution to this problem does not exist — it
is undecidable.

Input − A Turing machine and an input string w.

 Problem − Does the Turing machine finish computing of the string w in a finite
number of steps? The answer must be either yes or no.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Now we will design an inverted halting machine (HM)’ as −

Khatai Ans valo kor dewa ache pls visit this page

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

a) DFA for the Language:

​
 L = { w has an even number of 1s and even number of 0s} }​
 ​
 Alphabet: sigma = {0, 1})

Idea

To track both:

●​ Even or odd number of 0s, and​

●​ Even or odd number of 1s​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

DFA Diagram

●​ (q_0) is the start and also the accepting state (since both counts start
at even)​

●​ Only (q_0) is accepting, since it represents even 0s and even 1s​

Final Answer: Summary

●​ States: (Q = {q_0, q_1, q_2, q_3})​

●​ Start State: (q_0)​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ Accepting State: ({q_0})​

●​ Alphabet: ({0, 1})​

●​ Transition Function: As shown in the table above​

This DFA recognizes all binary strings that contain an even number of 0s
and an even number of 1s.

b) Construct an NFA for the following: Strings where the first symbol is present
somewhere later on at least once.[6]

To construct an NFA for the language:

Strings where the first symbol is present somewhere later on
at least once

This means:

●​ The first character of the input (either 0 or 1) must reappear later in
the string.​

●​ Examples:​

○​ Accepted: 00, 0110, 1001, 010110​

○​ Rejected: 01, 10 (because the first symbol does not repeat later)​

💡 Idea:

We can design the NFA using nondeterminism:

1.​ Read the first symbol (0 or 1) and remember it using states.​

2.​ Then move through the rest of the string.​

3.​ If we find the same symbol again, accept.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

States:

●​ q0: Start state (before reading first character)​

●​ q1: Remember first symbol was 0​

●​ q2: Remember first symbol was 1​

●​ qf: Accepting state (once the first symbol is seen again)​

●​ qd: Dead state (optional — not always necessary in NFA)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

a) Build an NFA for the following language: L = { w ends in 01}

Idea

●​ We need strings that end with “01”.​

●​ The NFA can read any sequence of 0s and 1s first (Σ*) and then check
the last two symbols.​

●​ Nondeterminism allows us to guess when we are at the last two
symbols.​

NFA Construction

States:

●​ q0: Start state, before seeing the ending 01​

●​ q1: Saw 0 as the second last symbol​

●​ q2: Saw 01 → Accepting state

Explanation:

●​ q0 reads any prefix (loops on 0 or 1)​

●​ Nondeterministically jumps to q1 when it sees a 0 that might be the
second last symbol​

●​ If next symbol is 1, move to q2 → accept​

●​ Accept state is q2

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

b) Advantages and Caveats of NFA (Nondeterministic Finite Automaton)

Advantages of NFA

1.​ Simplicity of Design:​
 Easier to design than DFA for some complex languages because
nondeterminism allows multiple choices.​

2.​ Fewer States:​
 Often requires fewer states than a DFA for the same language.​

3.​ Flexible Transitions:​
 Can use ε-transitions (moves without input), which makes modeling
certain patterns easier.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

4.​ Good for Theoretical Analysis:​
 Useful in proofs and conversions (e.g., from regex to automata).​

5.​ Expressiveness:​
 Can represent the same languages as DFA (all regular languages) but
more succinctly.​

Caveats / Disadvantages of NFA

1.​ Nondeterminism Not Directly Implementable:​
 Computers cannot directly execute nondeterministic choices; must
simulate with DFA or backtracking.​

2.​ Conversion to DFA Can Cause State Explosion:​
 Converting NFA to DFA may result in exponentially more states (subset
construction).​

3.​ Complexity in Simulation:​
 Checking acceptance requires tracking multiple paths, which can be
less efficient.​

4.​ Ambiguity in Transitions:​
 Multiple transitions for the same input can complicate analysis or
implementation.

5.​ Limited Power: Even though NFA is more flexible, it still has some
limitations and cannot handle very complex patterns or languages.

✅ Summary:

●​ Advantages: Easier design, fewer states, uses ε-moves, concise
representation.​

●​ Caveats: Harder to implement directly, possible exponential growth
when converted to DFA, multiple paths to track.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

c) Convert the NFA from Question 5(a), to DFA. L={w∣w ends in
01},Σ={0,1}.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

6. Epsilon-NFA and Conversion
a) Why explicit epsilon-transitions in finite automata is important? (2)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

An ε-transition in a finite automaton is a move from one state to another
without consuming any input symbol.

Importance of ε-Transitions (Short Version)

1.​ Simplifies NFA construction from regular expressions.​

2.​ Allows branching without consuming input.​

3.​ Supports nondeterminism efficiently.​

4.​ Combines smaller automata into larger ones.​

5.​ Helps in NFA → DFA conversion using ε-closure.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

b) Build an epsilon-NFA for the following language: L = \{ w is empty, or if
non-empty will end in 01}

Idea

●​ The language includes the empty string → use an ε-transition from
start to accepting state.​

●​ Non-empty strings must end with 01 → similar to the DFA/NFA for
ends in 01.​

●​ Use ε-transitions to handle empty string or branching.​

States

●​ q0: Start state​

●​ q1: Saw a 0 that might be second-last symbol​

●​ q2: Saw 01 → Accepting state​

●​ Accepting state: q0 (for ε / empty) and q2

Explanation:

1.​ ε-transition from q0 → q2 allows accepting empty string.​

2.​ For non-empty strings:​

○​ Track last two symbols using q1 → q2.​

○​ Accept if string ends with 01.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

c) Convert epsilon-NFA to DFA based on Question 6(b).

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

7. Regular Expressions (RE) and Finite Automata

a) Describe the relation between Regular Expressions (RE) and Finite
Automata. Show with figure that they are interchangeable. (6)

Definition

●​ Regular Expression (RE):​
 A formula that describes a set of strings over an alphabet. Example:​
 R=(a∣b)∗ab enerates all strings ending with ab.​

●​ Finite Automaton (FA):​
 A state machine (DFA or NFA) that accepts exactly the same
language as described by a regular expression.​

Relation Between RE and FA

1.​ Every Regular Expression → NFA/DFA​

○​ Given a regular expression, we can construct an NFA (possibly
with ε-transitions) that accepts the same language.​

○​ Example: R = a(b|c) → NFA with branching using
ε-transitions.​

2.​ Every FA → Regular Expression​

○​ For any DFA/NFA, there exists a regular expression that
represents the set of strings accepted by the FA.​

○​ This is usually done using state elimination method.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

8. Context-Free Grammar (CFG) and PDA Memory

a) Construct a context-free grammar for the following DFA: (6)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Step 1: Understand Ambiguity

A grammar is ambiguous if there exists at least one string in the language
that has two or more distinct parse trees (or derivations).

Step 2: Find a Candidate String

 Consider the string:w=aab

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Step 4: Conclusion

●​ The string aab has two distinct parse trees, so the grammar is
ambiguous

Ans. For grammar to be ambiguous, there should be more than one parse
tree for same string.

Above grammar can be written as

S → aSbS

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

S → bSaS

S → ∈

Lets generate a string ‘abab’.

So, now parse tree for ‘abab’.

Left most derivative parse tree 01

S → aSbS

S → a∈bS

S → a∈baSbS

S → a∈ba∈b∈

S → abab

Parse Tree 01

Left most derivative parse tree 02

S → aSbS

S → abSaSbS

S → ab∈aSbS

S → ab∈a∈bS

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

S → ab∈a∈b∈

S → abab

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Does a Pushdown Automaton (PDA) have memory?

Answer: Yes.

1.​ PDAs have a stack.​

○​ A stack is like a vertical pile of boxes where you can put things on top
(push) or take things off (pop).​

2.​ The stack remembers information.​

○​ Unlike a simple finite automaton that “forgets” everything except its current
state, a PDA can remember many symbols in the stack.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

3.​ Example: Language (L = { a^n b^n \mid n \ge 0 })​

●​ Step 1: Read each a → push a onto the stack​

●​ Step 2: Read each b → pop one a from the stack​

●​ Step 3: If the stack is empty at the end → accept​

Here, the stack “remembers” how many as were read, which is why PDA has memory.

✅ Simple takeaway:

●​ Finite automata → no memory except state​

●​ PDA → memory via stack​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

