2016-17(4th batch)

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

a) Analyze the terms: Theorems, Lemmas and Corollaries. (4)

Well, they are basically just facts: some result that has been arrived at.

e A Theorem is a major result
« A Corollary is a theorem that follows on from another theorem

¢« A Lemma is a small results (less important than a theorem)

-

We typically refer to:
= A major result as a “theorem”

= An intermediate result that we show to prove a larger result as a
“lemma”

= A result that follows from an already proven result as a
“corollary”

An example:

Theorem: The height of an n-node binary
tree is at least floor(lg n)

Lemma: Level i of a perfect binary tree has
2/ nodes.

Corollary: A perfect binary tree of height h
has 2h+1-1 nodes.

Here’s a clear analysis of the terms Theorems, Lemmas, and Corollaries:

1. Theorem
e A theorem is a significant, proven statement in mathematics.

e |tis usually an important result that forms the backbone of a theory or provides
insight into a major concept.

e Theorems are typically proven using axioms, definitions, and previously proven
theorems or lemmas.

Example:
The Pythagorean Theorem states that in a right-angled triangle:
[a?2 + b2 =c 2]

AVAILABLE AT:

http://www.onebyzeroedu.com

2. Lemma

e Alemmais a “helping theorem” — a result that is proved primarily to assist in
proving a larger or more significant theorem.

e Lemmas are not usually of independent importance but are crucial for breaking down
complex proofs.

Example:
A technical lemma might be used to establish properties of functions that are later used in
proving the Fundamental Theorem of Calculus.

3. Corollary

e A corollary is a statement that follows directly from a theorem with little or no
additional proof.

e |tis an immediate consequence of a theorem, often noted for clarity or completeness.

Example:
From the theorem that “the sum of the angles in a triangle is 180°,” a corollary is that “each
angle of an equilateral triangle is 60°.”

Summary Table:

Term Purpose Importance
Theorem Major, central result High
Lemma Tool to assist in proving a theorem Medium (supportive role)
Corollary Immediate consequence of a Low to Medium

theorem

AVAILABLE AT:

http://www.onebyzeroedu.com

b) What is Automata Theory? Describe the applications of Finite Automata. (4)

Automata Theory is a branch of theoretical computer science that deals with the study of
abstract machines or mathematical models of computation (called automata) and the
computational problems that can be solved using these machines. It provides the foundation
for understanding how languages are defined and recognized by computational systems.

What is Automata Theory?

m Study of abstract computing devices, or
“machines”

= Automaton = an abstract computing device

= Note: A “device” need not even be a physical
hardware!

» A fundamental question in computer science:

= Find out what different models of machines can do
and cannot do

= The theory of computation
= Computability vs. Complexity

Central Concepts of Automata Theory:

1. Automata

Automata are abstract, mathematical models of computation that perform operations on
input strings. Types of automata include:

e Finite Automata (FA) — Used for recognizing regular languages.
e Pushdown Automata (PDA) — Used for recognizing context-free languages.

e Turing Machines (TM) — A model of general-purpose computation.

AVAILABLE AT:

http://www.onebyzeroedu.com

2. Alphabets (X) and Strings

e Alphabet (Z): A finite set of symbols.
Example: Z = {0, 1}

e String: A sequence of symbols from the alphabet.
Example: "0101" is a string over the alphabet {0, 1}.

3. Languages

A language is a set of strings formed using the alphabet. Automata classify these languages
based on the type of grammar and machine used to recognize them:

e Regular Languages — Recognized by finite automata.
e Context-Free Languages — Recognized by pushdown automata.

e Recursively Enumerable Languages — Recognized by Turing machines.

4. Grammar

A grammar defines the structure of a language using production rules. According to the
Chomsky hierarchy, grammars are classified into:

e Type-3: Regular Grammar
e Type-2: Context-Free Grammar
e Type-1: Context-Sensitive Grammar

e Type-0: Unrestricted Grammar

5. Transition Functions

Defines how the automaton moves from one state to another based on the input symbol. For
example:

e |n Deterministic Finite Automata (DFA), a state and input symbol lead to exactly
one state.

AVAILABLE AT:

http://www.onebyzeroedu.com

In Non-deterministic Finite Automata (NFA), they may lead to multiple possible
states.

6. Determinism vs Non-determinism

Deterministic Automata: One transition per input.
Non-deterministic Automata: Multiple possible transitions.

Both DFA and NFA recognize regular languages and are equivalent in terms of
computational power.

7. Acceptance of a Language

An automaton accepts a string if, after processing all input symbols, it reaches a valid
accepting (or final) state.

Applications of Finite Automata (One-line each):

1.

Lexical Analysis in Compilers: Used to identify tokens in source code like
keywords and operators.

String Processing: Helps find and replace patterns in text.FA is used to search for
patterns in text, such as identifying keywords in a search engine or searching for
substrings in text editors.

Spell Checkers: Checks if typed words match valid dictionary patterns.

Artificial Intelligence (Simple Al): Models simple decision-based systems or
behavior.

System Verification: Tests if a system performs correctly in all its states.
Compiler Design: Used in various phases of compiler construction.

Digital Circuit Design: Designs sequential logic circuits like Mealy and Moore
machines.

AVAILABLE AT:

http://www.onebyzeroedu.com

8. Simple Device Control: Controls basic machines like elevators or washing

machines with defined states.

9. Natural Language Processing: Recognizes patterns in text or speech for language

tools.

c) A containment hierarchy of classes of formal languages has been classified as The

Chomsky Hierarchy. Describe with suitable figure(s). (4)

Type-0

Type-1

Type-2

Type-3

Type-0: Unrestricted

(Recursively Enumerable Languages)

Machine: Turing Machine

Type-1: Context-Sensitive

Machine: Linear Bounded Automaton |

I

I

I |
| + +
I
I
I

| Type-2: Context-Free

| Machine: Pushdown Automaton |

AVAILABLE AT:

+

Unristricted Grammar

Y

(Recognized by
Turing Machine)

Context Sesitive
Grammar

Y

(Accepted by Linear
Bound Automata)

v

Context Free Grammar

(Accepted by Push
Down Automata)

> Regular Grammar

(Accepted By
Finite Automata)

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Type-3: Regular |
Machine: Finite |
Automaton |

+ - - — +

+—— — — —

f———— — — —

Each class is included inside the next, representing containment.

Type-3 € Type-2 < Type-1 < Type-0

The Chomsky Hierarchy, developed by Noam Chomsky, organizes formal languages into a
hierarchy based on the type of grammars and machines needed to recognize them. It
consists of four levels, each more expressive than the one above it.

The following table summarizes each of Chomsky's four types of grammars, the
class of language it generates, the type of automaton that recognizes it, and the
form its rules must have:

Grammar | Language Automaton Production
rules(constraints)
Type-0 Recursively Turing machine a—>B
Enumerable (no constraints)
Type-1 Context Linear-bounded non- a—>R
Sensitive deterministic Turing |a|<=|R|
machine
Type-2 Context Free Nondeterministic pushdown a—>R
automaton la|<=]RB]|
|a]=1.
Type-3 Regular o V>VT/T
Finite state automaton (or)
V—>TV/T

This is a hierarchy. Therefore every language of type 3 is also of type 2, 1 and 0.
Similarly, every language of type 2 is also of type 1 and type 0, etc.

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Levels of the Chomsky Hierarchy:

1. Type-0: Unrestricted Grammars

o Languages: Recursively Enumerable Languages

o Machine: Turing Machine

o Most powerful — can express any computable language.
2. Type-1: Context-Sensitive Grammars

o Languages: Context-Sensitive Languages

o Machine: Linear Bounded Automaton

o Rules depend on context; more restricted than Type-O0.
3. Type-2: Context-Free Grammars

o Languages: Context-Free Languages

o Machine: Pushdown Automaton

o Mostly used in programming language syntax, such as in compilers.
4. Type-3: Regular Grammars

o Languages: Regular Languages

o Machine: Finite Automaton

o Most restricted; often used in text processing and lexical analysis.

AVAILABLE AT:

http://www.onebyzeroedu.com

2. Pushdown Automata (PDA) and Pumping Lemma

a) Define push down automata with an example. (2)

a) Define Pushdown Automata (PDA) with Example

A Pushdown Automaton (PDA) is a type of automaton that uses a stack as an additional
memory structure. It is an extension of Finite Automata (FA) that allows it to recognize a
broader class of languages — specifically, context-free languages (CFLs).

A Pushdown Automaton (PDA) is a type of automaton that uses a stack in addition to its
finite control.
It is more powerful than a Finite Automaton (FA) but less powerful than a Turing Machine.

PDA is mainly used to recognize Context-Free Languages (CFLs).

Formal Definition:

A PDA is defined as a 7-tuple:M=(Q,Z,I",56,q0,Z0,F)

Where:

S Meaning

y

m

b

o

I

Q Finite set of states

z Input alphabet

r Stack alphabet

o Transition function: 8(q, a, X) — (p, y) where: — q = current state —a =
current input symbol (or €) — X = top of stack symbol — y = string to
replace X on stack

q Start state

0

Y4 Initial stack symbol

F Set of accepting (final) states

AVAILABLE AT:

http://www.onebyzeroedu.com

Working Principle:

PDA reads input from left to right.

It can push or pop symbols on the stack.

The stack provides memory, allowing PDA to recognize patterns like matching

parentheses.
PDA can accept input by:
1. Final state, or

2. Empty stack.

INPUT TAPE

X

Finite
Control
Unit

Diagram (conceptually):

Input Tape —abba
Stack — Z0 |
States — q0, g1, of

Transition example:

0(q0, a, Z0) = (91, AZ0)
o(q1, b, A) =(q1, ¢€)

Meaning:

When reading a, push A on stack.

When reading b, pop A from stack.

AVAILABLE AT:

PUSH POP

Zo

STACK

http://www.onebyzeroedu.com

Example:

PDA for language:

[
L={a*nb\|[\n=0}

]
Steps:
e For each a, push symbol (say X) on stack.

e Foreach b, pop one X.

e Accept if stack becomes empty at end.

The stack allows the PDA to remember an unlimited amount of information, making it suited
for languages with nested structures like parentheses.

b) Give pushdown automata that recognize the following languages: (5)

« (A)A={w € {0,1}* | wcontains at least three 1s }

« (B)B={w € {0,1}* | w = w’ and the length of w is odd }

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Question with Solutions Part 5

1. Give pushdown automata that recognize the following languages. Give both a drawing and
6-tuple specification for each PDA.

(a) A= {w€ {0,1}*| w contains at Jeast three 1s] Answer:

£ £ £ £ £ £ \\
BRSBTS

—& 0e—e De—e 0e—e

l,e—e¢

We formally express the PDA as a 6-tuple (2,149, F), where
* @= 191924594}

* 2={0,1}

s I'={0,1]}

e transition function & : @ % T % Te — P(@ % T%) is defined by
Input: 0 1 (5
Stack: | 0|1 € 011 € 011]¢

aq { (‘?W)E)} { (4‘2)5)]
q {(gue)} {(gs.8)}
g5 {(gs.€)) {(ga,£)]
g4 {(ga,)} {(ga,)]

Blank entries are @.

* 18 the start state
= {q4}
Note that 4 1s a regular Janguage, so the Janguage has a DFA. We can easily convert
the DFA into a PDA by using the same states and transitions and never push nor pop
anything to/from the stack.
b)B={we€ {01} |w= w® and the length of w 1s odd} Answer:

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

0 — ¢

— 1l — ¢ y y
4"{@1}8’8 5_@ -@S’s_}‘c
A

0s — 0 00— ¢
ls — 1 1, 1— ¢

For any string www in BBB:

e Lengthis odd — |w|=2n+1 for some n=0

e The string is a palindrome — the first nnn symbols must match
the last nnn in reverse order

e There is one middle symbol that doesn’t need to match anything

Simplified PDA Operation

1. g2 (Push Phase):
o Read the first half of the string (first nnn symbols)
o Push each symbol onto the stack

2. Transition q2 — q3 (Middle):
o Non-deterministically guess the middle symbol
o Read it and don't touch the stack

3. q3 (Pop Phase):

o Read the last half (last nnn symbols)

AVAILABLE AT:

http://www.onebyzeroedu.com

o For each input symbol, pop the stack and ensure they match

(reverse order)

4. Accept if:

o The stack is back to the start symbol (empty apart from
initial marker)

o Inputis fully consumed

S mesw Maema) meam b saasoaan mwasaw eaw sasasenne

We formally express the PDA as a 6-tuple (Q,L.1,,41,F), where

* 0= {304}
' I=(0])

o I'={0,1,5] (use $ to mark bottom of stack)

o transition function d : O x Zex Tz = P(Q x T%) is defined by

Tnput: 0 1 £
Stack: 0 []$ ¢ 0 | $ g 0) 3
1 {(,9)}
(2 {(,0),(g,2) } {(@1) (g.¢) }
¢ | {{ge)) (3.6} {(ga6) }
{a
Blank entries are 0.

¢ q118 the start state
' F={gy

c) Use the pumping lemma to prove that the language
A = {0*"1°"0™ | n > 0} is not context free.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

To prove that the language
A= {021113110n ‘ n > 0}

is not context-free, we will use the Pumping Lemma for Context-Free Languages.

Pumping Lemma for CFLs (Informal Statement)

If A is a context-free language, then there exists a constant p (the pumping length) such that any string

s € A with |s| > p can be split into five parts:
§ = uvwzry
such that:
1. lvwz| <p

2. |vz| > 1 (e, v or z is not empty)
3. Foralli > 0, the string uviwziy € A

Proof by Contradiction

Assume:

The language A is context-free.

Then by the pumping lemma, there exists a pumping length p.

Step 1: Choose a String in A
Let's pick:

s = 0%1% QP

Clearly, s € A, withm = p. Also, |s| = 2p + 3p + p = 6p > p, so the pumping lemma applies.

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Step 2: Split the String
The pumping lemma says:

§ = uvwzy

with:

e |vwz|<p

o |vz|>1

o wv'wz'y € Aforalli >0

Step 3: Analyze vwe

Since |vwz| < p, the substring vwz can only span one of the following blocks (can't span all of them as

each block is 2 p long):

1. The first block of Os (i.e., the 02P)
2. The block of 1s (i.e., the 1°P)
3. The last block of 0s (i.e., the 0%)

We handle each case to show a contradiction. 3

Case 1: vwzx is within the first block of Os

e Pumping v and & changes the number of Os in the first block.

2wa?y will have more than 2n 0s in the first block, but the other blocks

e New string after pumping: uv
won't change proportionally.
* So the string won't be of the form 02%1°"0"

e Contradiction.

Case 2: vwaz is within the 1s

e Pumping v and x changes the number of 1s.
¢ New string: number of 1s is no longer 3n, but the first and last blocks remain unchanged.
e Notin A.

e Contradiction.

Case 3: vwa is within the last block of Os

e Pumping adds or removes Os from the last block only.
e The number of Os in the last block will not matcl’*\‘l'/‘e required n, making the structure invalid.

e Contradiction.

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Conclusion

In all cases, pumping v and x produces a string not in A, which
contradicts the pumping lemma. Therefore:

A is not a context-free language.

a) What is Turing Machine? Give advantages of it. (3)

1. Turing Machine (TM): Definition

A Turing Machine (TM) is a mathematical model of computation that defines an abstract
machine capable of simulating any computer algorithm.

It was introduced by Alan Turing (1936) and is used to describe what can be computed
and how efficiently.

Formal Definition:
A Turing Machine can be represented as a 7-tuple:M=(Q,Z,I',6,q0,qaccept,greject)
Where:

e Q: Set of states
e >\Sigma: Input alphabet
e [\Gamma: Tape alphabet (<)

e O\delta: Transition function &(q, X) — (p, Y, D) where D € {L, R} (Left or Right
movement)

e (0: Start state
e (_accept: Accepting state

e (Q_rejectq: Rejecting state

AVAILABLE AT:

http://www.onebyzeroedu.com

Working Principle:

e TM has an infinite tape divided into cells.

e Each cell contains one symbol (from T).

e A tape head reads/writes symbols and moves left or right.

e Based on the current state and tape symbol, the transition function & determines:
o The next state,
o The symbol to write, and
o The direction to move.

e |f TM reaches q_accept, the input is accepted; if q_reject, it's rejected.

‘ 1 ulil Iy Iiviaul 111 1S \ 1 IVI}

Finite

control
Infinite tape with tape symbols Tape head

B[B[B[X, X, [X; |.. X; X, |B|B

i aas n

u— Input & output tape symbols —u

B: blank symbol (special symbol reserved to indicate data boundary)

Diagram (conceptually):
SO T O e T e I O O

T
Tape Head

At each step:

o(a, X) = (p, Y, D)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

means: In state q reading X — write Y, move D (L or R), and go to state p.

Example:
A TM that accepts strings with equal number of 0's and 1’s is a non-trivial example.

Here are the advantages of Turing Machine, with each explained in one line and including
more points:

Advantages of Turing Machine (TM)

1. Universal Model of Computation:
Turing Machines can simulate any algorithm or computational process.

2. Simple Yet Powerful Design:
Despite its basic components, a TM can model complex systems and processors.

3. Foundation for Computer Science:
It provides the theoretical basis for understanding computation and algorithmic limits.

4. Supports Infinite Memory:
The infinite tape allows handling arbitrarily large input sizes, unlike finite automata.

5. Recognizes Recursively Enumerable Languages:
It can recognize languages beyond the power of context-free and regular languages.

6. Flexible Variants:
Supports extensions like multi-tape or non-deterministic models for advanced
computation.

7. Basis for Decidability and Undecidability:
Helps classify problems into decidable and undecidable categories.

8. Can Model Real Computers:
Though abstract, a TM can simulate any modern computer's behavior and logic.

9. Useful in Algorithm Design:
It provides a standard for expressing and analyzing algorithms formally.

10. Enables Proofs in Complexity Theory:
Used in proving computational complexity, NP-hardness, and other theoretical
frameworks.

AVAILABLE AT:

http://www.onebyzeroedu.com

b) Construct a Turing Machine that accepts the language of palindromes over{a, b}. Also
specify the moves to trace the strings {abba},{abbaa},{aabba} (6)

Turing Machine Design (ldea):

1.

Mark the first character (replace it with X) and remember its value.
Move to the end of the tape and find the matching last character.
If matching, replace it with X.

Repeat for the next inner characters.

If all characters are correctly matched — accept.

If a mismatch occurs — reject.

The Turing machine, M is given by M = (Q, Z, I, 9, q0, B, F)

Where,

Q = {q0, a1, 92, g3, g4, 95, 96, 97, 98}

> ={a, b}

r={a, b, B}

0 = Given by the above mentioned transition diagram,
q0 = {q0}

AVAILABLE AT:

http://www.onebyzeroedu.com

B = {B}
F={q8}

Current StateCurrent SymbolNew SymbolMoveNext State

(s]0) a a R q0O

(s]0) b b R (e[0]

q0 . _ L ql

al a a L gl

ql b b L ql

ql _ _ R g2

q2 a _ R q3

g2 b _ R g4

g3 a a R q3

q3 b b R q3

q3 _ _ R | accept
a4 a a R q4

q4 b b R g4

q4 - _ R accept

L #lnin bnbaln

1. Trace for abba (Palindrome)

Initial: abba

Step 1: Xbba «— Mark first 'a’

Step 2: XbbX « Match last 'a’
Step 3: XXbX <« Mark first 'b'

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Step 4: XXXX « Match last 'b'
Final: All Xs — ACCEPT

2. Trace for abbaa (NOT a palindrome)

Initial: abbaa

Step 1: Xbbaa « Mark first 'a’

Step 2: XbbaX <« Match last 'a’

Step 3: XXbaX < Mark first 'b’

Step 4: XXbaX « Last charis'a’, but expected 'b' - REJECT

3. Trace for aabba (NOT a palindrome)

Initial: aabba

Step 1: Xabba < Mark first 'a’

Step 2: XabbX < Match last 'a’

Step 3: XXbbX <« Mark next 'a’

Step 4: XXbbX <« Lastis 'b' but expected 'a' - REJECT

c) What is meant by a halting problem in a Turing Machine? Explain with an
example. (3)

The halting problem is the question of determining whether a given Turing
Machine will eventually halt (stop) or run forever on a given input.

Alan Turing proved that a general solution to this problem does not exist — it
is undecidable.

Input — A Turing machine and an input string w.

Problem - Does the Turing machine finish computing of the string w in a finite
number of steps? The answer must be either yes or no.

AVAILABLE AT:

http://www.onebyzeroedu.com

Input
string

Halting
Machine

—— Yes (HM halts on input w)

—— No (HM does not halt on input w)

Now we will design an inverted halting machine (HM)’ as -

If H returns YES, then loop forever.

If H returns NO, then halt.

The following is the block diagram of an ‘Inverted halting machine’ —

Input
string

Infinite loop

Halting
Machine

——— No

Further, a machine (HM), which input itself is constructed as follows —

If (HM), halts on input, loop forever.

Else, halt.

Here, we have got a contradiction. Hence, the halting problem is undecidable.

Khatai Ans valo kor dewa ache pls visit this page

Onebyzero Edu - Organized Learning, Smooth Career

The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

a) DFA for the Language:

L = {w has an even number of 1s and even number of Os} }

Alphabet: sigma = {0, 1})

Idea

To track both:

e Even or odd number of 0s, and

e Even or odd number of 1s

We need to remember the state of both — so we need 4 states:

State

ao

qi1

a3

State Transitions

Current State

an

ad1

ad3

Input =0

! 1]

Meaning

Even Os, Even 1s

Odd 0s, Even 1s

Even Os, Odd 1s

Odd 0s, Odd 1s

Input =1

— ds

AVAILABLE AT:

http://www.onebyzeroedu.com

DFA Diagram

Transition diagram:

Transition table:

& 0 1
— A C B
B D A
C A D
D C B

e (q_0)is the start and also the accepting state (since both counts start
at even)

e Only (q_0) is accepting, since it represents even 0s and even 1s

Final Answer: Summary

e States: (Q={q_0,q9_1,9 2,9 3}

e Start State: (q_0)

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

e Accepting State: ({q_0})
e Alphabet: ({0, 1})

e Transition Function: As shown in the table above

This DFA recognizes all binary strings that contain an even number of 0s
and an even number of 1s.

b) Construct an NFA for the following: Strings where the first symbol is present
somewhere later on at least once.[6]

To construct an NFA for the language:

Strings where the first symbol is present somewhere later on
at least once

This means:

e The first character of the input (either 0 or 1) must reappear later in
the string.

e Examples:

o Accepted: 60,0116, 1061, 010110

o Rejected: 61, 10 (because the first symbol does not repeat later)

We can design the NFA using nondeterminism:

1. Read the first symbol (0 or 1) and remember it using states.
2. Then move through the rest of the string.

3. If we find the same symbol again, accept.

AVAILABLE AT:

http://www.onebyzeroedu.com

States:

q0: Start state (before reading first character)

g1: Remember first symbol was 6

g2: Remember first symbol was 1

qf: Accepting state (once the first symbol is seen again)

qd: Dead state (optional — not always necessary in NFA)

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

a) Build an NFA for the following language: L = { w ends in 01}

Idea

e \We need strings that end with “01”.

e The NFA can read any sequence of @s and 1s first (>*) and then check
the last two symbols.

e Nondeterminism allows us to guess when we are at the last two
symbols.

NFA Construction

States:

e (0: Start state, before seeing the ending 01

e (71: Saw 0 as the second last symbol

e (2: Saw 01 — Accepting state
Explanation:

e (0 reads any prefix (loops on 0 or 1)

e Nondeterministically jumps to g1 when it sees a 0 that might be the
second last symbol

e [f next symbolis 1, move to q2 — accept

e Accept state is g2

AVAILABLE AT:

http://www.onebyzeroedu.com

Let, 3 ={0, 1}
A NFA for the following language:
L={w | wends in 01}
Transition diagram:
0,1
Start

0 1
— 0

Transition table:

& _ 0 1
—» A . {A.B} {A}
B . {C}
*C {} {}

b) Advantages and Caveats of NFA (Nondeterministic Finite Automaton)

Advantages of NFA

1. Simplicity of Design:
Easier to design than DFA for some complex languages because
nondeterminism allows multiple choices.

2. Fewer States:
Often requires fewer states than a DFA for the same language.

3. Flexible Transitions:
Can use g-transitions (moves without input), which makes modeling

certain patterns easier.

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

4. Good for Theoretical Analysis:
Useful in proofs and conversions (e.g., from regex to automata).

5. Expressiveness:
Can represent the same languages as DFA (all regular languages) but
more succinctly.

Caveats / Disadvantages of NFA

1. Nondeterminism Not Directly Implementable:
Computers cannot directly execute nondeterministic choices; must
simulate with DFA or backtracking.

2. Conversion to DFA Can Cause State Explosion:
Converting NFA to DFA may result in exponentially more states (subset
construction).

3. Complexity in Simulation:
Checking acceptance requires tracking multiple paths, which can be
less efficient.

4. Ambiguity in Transitions:
Multiple transitions for the same input can complicate analysis or
implementation.

5. Limited Power: Even though NFA is more flexible, it still has some
limitations and cannot handle very complex patterns or languages.

"4 Summary:

e Advantages: Easier design, fewer states, uses e-moves, concise
representation.

e Caveats: Harder to implement directly, possible exponential growth
when converted to DFA, multiple paths to track.

AVAILABLE AT:

http://www.onebyzeroedu.com

c) Convert the NFA from Question 5(a), to DFA. L={w|w ends in
01},2={0,1}.

NFA to DFA construction: Example

» L={w|wendsin 01} 1 0
NFA: .
. DFA: _ab o 1
0
8-0®
Op 8o 0 1
> 1° ! —— Y 0] | o
—% {9001} | g} —»lag] @oad [lGoa] | [Goa:l
% g @ || = Tlgead | lwal | ol
K¢ @ @ —fet—
(9,94
“[90.92] 0. Enumerate all possible subsets
TG 1. Determine transitions
— T 2. Retain only those states
- reachable from {q,}
27
NFA 10 DFA! Repeating the example
using LAZY CREATION
= L={w|wendsin 01}
NFA: DFA:
0,1 -
$0-®
By 0 1 5, o | |
—»% {apai} | {ao} —» (a0 | looad | Lol |
Q1 @ {a.}
9z @ %)
Main Idea:
Introduce states as you go

(on a need basis)

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

6. Epsilon-NFA and Conversion

a) Why explicit epsilon-transitions in finite automata is important? (2)

FA with e-Transitions

= We can allow explicit e-transitions in finite
automata

= i.e., a transition from one state to another state
without consuming any additional input symbol

= Explicit e-transitions between different states
introduce non-determinism.

= Makes it easier sometimes to construct NFAs

Definition: £ -NFAs are those NFAs with at
least one explicit e-transition defined.

= £ -NFAs have one more column in their
transition table 33

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

An g-transition in a finite automaton is a move from one state to another
without consuming any input symbol.

Importance of e-Transitions (Short Version)

1. Simplifies NFA construction from regular expressions.
2. Allows branching without consuming input.

3. Supports nondeterminism efficiently.

4. Combines smaller automata into larger ones.

5. Helps in NFA — DFA conversion using e-closure.

AVAILABLE AT:

http://www.onebyzeroedu.com

b) Build an epsilon-NFA for the following language: L = \{ w is empty, or if
non-empty will end in 01}

Idea

e The language includes the empty string — use an g-transition from
start to accepting state.

e Non-empty strings must end with 81 — similar to the DFA/NFA for
ends in 01.

e Use e-transitions to handle empty string or branching.

States

e (10: Start state
e q1: Saw a 0 that might be second-last symbol
e (2: Saw 01 — Accepting state

e Accepting state: q0 (for € / empty) and g2
Explanation:

1. e-transition from g0 — g2 allows accepting empty string.
2. For non-empty strings:
o Track last two symbols using q1 — gZ2.

o Accept if string ends with 01.

AVAILABLE AT:

http://www.onebyzeroedu.com

L = {w | w is empty, or if non-empty will end in 01}

0,

E

1
0

@@

0 1 0 1
O g %
—> *qY @ %] {T'0.00} — {0’00}
dy {30:94} | {0} {ao}
q, [0 {9:} {94}
‘0, a 5] {q.}

c) Convert epsilon-NFA to DFA based on Question 6(b).

i Example: e-NFA = DFA

L = {w | w is empty, or if non-empty will end in 01}

start

~—> ECLOSE union |
5 0 1 ‘ 5 0 1
) -== \ € D\\
— q, |8 o (@] — t6ea [Nead | o
@ |f%wad!|fad [fad | @ad | (@a} | {0
a4 277 | {ay} {21}_ _J {do} {o.9+} {90}
0] %) {2} {40,92} {90.94} {90}

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career

The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

7. Regular Expressions (RE) and Finite Automata

a) Describe the relation between Regular Expressions (RE) and Finite
Automata. Show with figure that they are interchangeable. (6)

Definition

e Regular Expression (RE):
A formula that describes a set of strings over an alphabet. Example:

R=(a|b)*ab enerates all strings ending with ab.

e Finite Automaton (FA):
A state machine (DFA or NFA) that accepts exactly the same
language as described by a regular expression.

Relation Between RE and FA

1. Every Regular Expression — NFA/DFA

o Given a regular expression, we can construct an NFA (possibly
with e-transitions) that accepts the same language.

o Example: R = a(b|c) — NFA with branching using
e-transitions.

2. Every FA — Regular Expression

o For any DFA/NFA, there exists a regular expression that
represents the set of strings accepted by the FA.

o This is usually done using state elimination method.

AVAILABLE AT:

http://www.onebyzeroedu.com

Finite Automata

Finite automata is an abstract computing device. It is a mathematical model of

a system with discrete inputs, outputs, states, and a set of transitions from
state to state that occurs on input symbols from the alphabet.

Regular Expression

Regular Expressions are the expressions that describe the language accepted by Finite
Automata. It is the representation certain set of strings in an algebraic fashion

The languages accepted by some regular expressions are referred to as Regular

languages.

The various operations in the regular language are

1) Union
If R and S are two regular languages, their union R U S is also a Regular Language.

RUS={a|aisinRoraisin S}

2) Intersection

If R and S are two regular languages, their intersection is also a Regular Language.

LNM={ab|aisinRandbisin S}

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

3) Kleene closure

If R is a regular language, its Kleene closure R1* will also be a Regular
Language.

R* = Zero or more occurrences of language R

= To show that they are interchangeable,
consider the following theorems:
= Theorem 1: For every DFA A there exists a regular
expression R such that L(R)=L(A)
ook « Theorem 2: For every regular expression R there
exists an & -NFA E such that L(E)=L(R)

|Klmm111mm|
Or, .
Relationship
The relationship between FA and RE is as follows —
Can be Regular Canbe
Converted EXpression converted to
Deterministic NFAwith
finite & moves
aulomata
Can be Can be
P—— converted to
NFA without
& moves

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

b) Convert the following RE to e-NFA: (0+1)*01(0+1)* [6]

_

Example: (0+1)*01(0+1)"

(0+1)* 01 (0+1)*

8. Context-Free Grammar (CFG) and PDA Memory

a) Construct a context-free grammar for the following DFA: (6)

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

b) Show that the grammar ({S}, {a, b), R, S) with rules R = S—aS | aShS | € is
ambiguous. [4]

Step 1: Understand Ambiguity

A grammar is ambiguous if there exists at least one string in the language
that has two or more distinct parse trees (or derivations).

Step 2: Find a Candidate String

Consider the string:w=aab

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

- i Sl IR LW 0

First derivation:

1. S=aS
2. S = aSbS forthe second Sin as ? Let's check carefully.
e Start: .S

e Option1:§ = aS — as
e Sin as:S = aSbS — aasbs b ? Wait, let's make it simple.

Better candidate: aab:

Derivation 1:

1. S=aS - as

2. S = aSbS — a(as)bs

3. FirstS — € — a(a)bs — aabs
4. LastS — & — aab

Derivation 2 (Different parse tree):
1. S = aSbS - as b s

2. FirstS— as — aas

3. SecondS —-&g— aabs

4. LastS — e — aab [4 N

Step 4: Conclusion

e The string aab has two distinct parse trees, so the grammar is
ambiguous

Ans. For grammar to be ambiguous, there should be more than one parse
tree for same string.

Above grammar can be written as

S — aSbS

AVAILABLE AT:

http://www.onebyzeroedu.com

S — bSaS

S > e

Lets generate a string ‘abab’.
So, now parse tree for ‘abab’.

Left most derivative parse tree Ol

S — aSbS

S —aEbS

S — a€baSbS
S —»aE€baebe

S — abab

)

AN,

a s B8 S

6/ l// \.\s
[l,

Parse Tree 01

Left most derivative parse tree 02

S — aSbS
S — abSaSbS
S —- abeaSbhS

S —- abeaebS

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

S »>abeaebe

S — abab

.//\

th—O

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

c) Does a pushdown automata have memory? Justify.[2]

Does a Pushdown Automaton (PDA) have memory?
Answer: Yes.

1. PDAs have a stack.

o A stack is like a vertical pile of boxes where you can put things on top
(push) or take things off (pop).

2. The stack remembers information.

o Unlike a simple finite automaton that “forgets” everything except its current
state, a PDA can remember many symbols in the stack.

AVAILABLE AT: . .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

w

Example: Language (L = {a*n b*n\midn\ge 0})

Step 1: Read each a — push a onto the stack

Step 2: Read each b — pop one a from the stack

Step 3: If the stack is empty at the end — accept

Here, the stack “remembers” how many as were read, which is why PDA has memory.

7] Simple takeaway:
e Finite automata — no memory except state

e PDA — memory via stack

l.cit Hounded Head head

Stack [Memory)

AVAILABLE AT:

http://www.onebyzeroedu.com

