2019-20

8

A.a) Short notes on various types of jumping instruction: [6] i) Signed Conditional Jumps ii)
Unsigned Conditional Jumps iii) Single Flag Jumps

Here is a short note on the various types of jumping instructions in assembly language
(particularly in x86 architecture):

i) Signed Conditional Jumps
e These jumps are used when working with signed numbers (positive or negative).
e They depend on the sign (SF), overflow (OF), and zero (ZF) flags.

e Common signed jump instructions:
o JG/JINLE —Jump if greater (ZF = 0 and SF = OF)
o JL/JNGE - Jump if less (SF # OF)
o JGE/ JNL — Jump if greater or equal (SF = OF)

o JLE/JNG —Jump if less or equal (ZF = 1 or SF # OF)

ii) Unsigned Conditional Jumps
e These are used when working with unsigned numbers (only positive).
e They depend on the carry (CF) and zero (ZF) flags.
e Common unsigned jump instructions:

o JA/JNBE - Jump if above (CF = 0 and ZF = 0)

o JB/JNAE — Jump if below (CF = 1)

AVAILABLE AT

http://www.onebyzeroedu.com

o JAE / JNB — Jump if above or equal (CF = 0)

o JBE/JNA —Jump if below or equal (CF =1 or ZF = 1)

iii) Single Flag Jumps

e These jumps are based on the value of a single flag.

e Common single-flag jump instructions:
o JE/JZ—-Jump if equal / zero (ZF = 1)
o JNE / JNZ — Jump if not equal / not zero (ZF = 0)
o JC—Jumpifcarry (CF=1)
o JNC —=Jump if no carry (CF = 0)
o JS—Jump ifsign (SF =1)
o JNS —Jump if no sign (SF = 0)
o JO —Jump if overflow (OF = 1)

o JNO —Jump if no overflow (OF = 0)

Let me know if you need examples or a diagram for better understanding!

Here are examples for each type of jumping instruction:

\"4 i) Signed Conditional Jump Example

MOV AX, 5
CMP AX, -3
JG greater_label ; Jump if greater (signed comparison)

greater_label:
; AX is greater than -3 (signed), this code executes

AVAILABLE AT

http://www.onebyzeroedu.com

& Here, JG (Jump if Greater) considers signed values. Since 5 > -3, it jumps.

ii) Unsigned Conditional Jump Example

MOV AX, 5
CMP AX, 250
JA above_label ; Jump if above (unsigned comparison)

above_label:
; AX is above 250 (unsigned), but since 5 < 250, it won’t jump

s# JA checks unsigned comparison. Since 5 < 250 in unsigned, it doesn't jump.

iii) Single Flag Jump Example

MOV AX, 10
SUB AX, 10 ; AX =0, so Zero Flag (ZF) is set
JE equal_label ; Jump if equal (ZF = 1)

equal_label:
: Executes because AX ==0, so ZF =1

& JE (Jump if Equal) checks only the Zero Flag (ZF).

Let me know if you'd like to simulate this with step-by-step flag changes or memory
status!

Here are two simple 8086 Assembly Language Programs using MASM/TASM syntax:

1. Program to Compare Two Strings

This program compares two strings and sets a flag if they are equal.

AVAILABLE AT
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

.MODEL SMALL
.STACK 100H

.DATA
STR1 DB 'HELLO¥$', 0
STR2 DB 'HELLOS$', 0
MSG_EQUAL DB 'Strings are equal$'
MSG_NOTEQUAL DB 'Strings are not equal$'

.CODE

MAIN:
MOV AX, @DATA
MOV DS, AX

LEA SI, STR1 ; Point Sl to first string
LEA DI, STR2 ; Point DI to second string

COMPARE_LOOP:
MOV AL, [SI]
MOV BL, [DI]
CMP AL,'$" ; End of string?
JE END_COMPARE
CMP AL, BL
JNE NOT_EQUAL
INC SI
INC DI
JMP COMPARE_LOOP

NOT_EQUAL:
LEA DX, MSG_NOTEQUAL
JMP DISPLAY

END_COMPARE:
LEA DX, MSG_EQUAL

DISPLAY:
MOV AH, 09H
INT 21H

MOV AH, 4CH
INT 21H
END MAIN

AVAILABLE AT

http://www.onebyzeroedu.com

{4 2. Program to Concatenate Two Strings

.MODEL SMALL
.STACK 100H

.DATA
STR1 DB 'HELLO ', 0
STR2 DB 'WORLD$', 0
CONCAT DB 20 DUP('$") ; Empty buffer to store concatenated result

.CODE
MAIN:
MOV AX, @DATA
MOV DS, AX
MOV ES, AX ; Use ES for output buffer

LEA SI, STR1
LEA DI, CONCAT

COPY_STRI:
MOV AL, [SI]
CMP AL, 0
JE COPY_STR2
MOV [DI], AL
INC SI
INC DI
JMP COPY_STR1

COPY_STR2:
LEA SI, STR2

COPY_LOOP2:
MOV AL, [SI]
CMP AL, '$'
JE END_DISPLAY
MOV [DI], AL
INC S
INC DI
JMP COPY_LOOP?2

END_DISPLAY:
MOV BYTE PTR [DI], '$'
LEA DX, CONCAT
MOV AH, 09H
INT 21H

MOV AH, 4CH

AVAILABLE AT

http://www.onebyzeroedu.com

INT 21H
END MAIN

. Notes:

e Sis used as a string terminator for DOS INT 21H function 09H.

e Strings must be null-terminated or S-terminated based on how you plan to process
them.

e These programs work in 8086 real mode, suitable for emulators like DOSBox or
EMU8086.

Would you like these programs explained step-by-step?

7. a) What is Microcontroller? What are the advantages and disadvantages of
Microcontroller? [4]

Sure! Here's a comprehensive and detailed explanation of the question:

"4 7(a) What is a Microcontroller? What are the
Advantages and Disadvantages of Microcontroller?

+ What is a Microcontroller?

A Microcontroller (often abbreviated as MCU — Microcontroller Unit) is a compact
integrated circuit (IC) designed to govern a specific operation in an embedded system. It is
a self-contained system with a processor core, memory, and programmable input/output
peripherals.

It is sometimes referred to as a “computer on a chip” because it contains all essential
elements of a computer on a single IC. Microcontrollers are typically used in automated
systems, such as:

e Home appliances (washing machines, microwave ovens)

AVAILABLE AT

http://www.onebyzeroedu.com

Consumer electronics (TV remote, digital camera)
Automobiles (airbags, anti-lock braking system)
Industrial control systems

Robotics

loT (Internet of Things) devices

Basic Components of a Microcontroller:

1.

2.

CPU (Central Processing Unit) — Executes instructions and controls operations.

RAM (Random Access Memory) — Temporary memory for data storage during
program execution.

ROM/Flash — Non-volatile memory to store the program.

1/0 Ports — Interface with external devices such as sensors, switches, motors,
displays.

Timers and Counters — For timing operations and event counting.
Serial Communication Interface — UART, SPI, 12C for external communication.

ADC/DAC (Analog to Digital / Digital to Analog Converters) — Interface with
analog signals.

Interrupt System — To handle events like keypress or sensor input efficiently.

+ Advantages of Microcontroller:

1.

Compact and Cost-Effective:

o Combines CPU, memory, and I/O on a single chip.
o Reduces size and cost of the system.

o No need for additional external components for most tasks.

AVAILABLE AT

http://www.onebyzeroedu.com

2. Low Power Consumption:
o ldeal for battery-powered or energy-sensitive devices.
o Many microcontrollers have power-saving modes (sleep/idle).
3. Real-Time Performance:
o Can respond quickly to input/output changes in real-time systems.
o Interrupt-driven processing allows quick response to critical events.
4. Easy to Interface with Peripherals:

o Built-in GPIO (General Purpose Input/Output) pins and communication
protocols make it easy to connect with external devices like sensors, LEDs,
motors, etc.

5. Reliable for Repetitive Tasks:

o Excellent for controlling repetitive or fixed-function applications like motor
control or signal monitoring.

6. Wide Availability and Range:

o Available in many variants (8-bit, 16-bit, 32-bit).

o Manufacturers like Intel, Microchip, Atmel, STMicroelectronics provide a wide
variety of MCUs.

+ Disadvantages of Microcontroller:

1. Limited Processing Power:

o Generally not designed for heavy computation or multitasking.

o Not suitable for running complex operating systems or applications.

2. Restricted Memory:

AVAILABLE AT

http://www.onebyzeroedu.com

o

RAM and ROM are limited, which restricts the size of code and data handling
capabilities.

3. Limited Number of I/O Pins:

o

A fixed number of 1/0O ports makes it less flexible for complex 1/0-heavy
applications.

4. Fixed Architecture:

o

O

Most MCUs come with a fixed set of peripherals and architecture.

Difficult to upgrade hardware features once selected.

5. Less Flexible than Microprocessors:

o

Microcontrollers are good for specific tasks but not general-purpose
computing.

6. Slower Clock Speeds:

o

To reduce power consumption, they typically operate at lower clock speeds
than microprocessors.

+ Difference Between Microcontroller and Microprocessor (Brief):

Feature Microcontroller Microprocessor
Components CPU, RAM, ROM, I/O on one chip Only CPU (others external)
Application Embedded/control systems General-purpose computing
Power Consumption Low Higher
Size Small Larger (requires

peripherals)
Cost Low Higher

+ Popular Microcontroller Families:

e 8051 series — Basic 8-bit MCUs, widely used for educational and control
applications.

AVAILABLE AT

http://www.onebyzeroedu.com

e AVR (e.g., ATmega328) — Used in Arduino boards.
e PIC (by Microchip) — Widely used in industrial and consumer products.

e ARM Cortex-M — 32-bit MCUs used in high-performance embedded systems (e.g.,
STM32 series).

e MSP430 (by Texas Instruments) — Known for ultra-low power consumption.

+ Applications of Microcontroller:

1. Washing Machines, Microwave Ovens
2. Air Conditioners and Refrigerators

3. Digital Cameras and Smart Watches

4. Smart Home Devices (loT)

5. Car Engine Control Units (ECU), Airbags
6. Industrial Automation

7. Robotics

8. Medical Devices (ECG, glucose meters)
9. Mobile Phones and Remote Controllers

10. Elevators and Vending Machines

.7 Conclusion:

Microcontrollers are essential building blocks of modern electronic systems due to their
compactness, low power, and real-time control capabilities. While they have some
limitations in processing power and memory, their benefits in embedded and dedicated
tasks far outweigh the drawbacks.

b) What is the difference between timer and counter of a microcontroller? List the factors to
be considered for selection of microcontroller for particular application.

AVAILABLE AT

http://www.onebyzeroedu.com

Here is a complete and detailed answer for Question 7(b):

4 (b) What is the Difference Between Timer and
Counter of Microcontroller?

+ Timer:
e A timer is a device that counts internal clock pulses to measure time intervals.
e |tis used to generate delays, control real-time events, or measure time duration.

e Works with the microcontroller’s internal clock frequency (e.g., 1 MHz, 16 MHz).

Example Use: Delay generation, time measurement, periodic interrupt generation.

+ Counter:

e A counter is a device that counts external events or pulses applied to an input pin.

e |tis used for event counting, such as the number of external pulses, sensor
activations, or revolutions of a motor shaft.

e Works with external signals rather than internal clock.

Example Use: Counting how many times a button is pressed, RPM measurement,
frequency counting.

Difference Table:

Feature Timer Counter
Input Source Internal clock External event (via pin)
Main Use Measure time/delay Count occurrences of events
Example Generating delays, real-time Frequency/rate measurement

Application clocks

AVAILABLE AT

http://www.onebyzeroedu.com

Trigger Source Clock cycles External pulses (rising/falling
edge)

Controlled by Internal programming External hardware signals

{4 Factors to be Considered for Selection of
Microcontroller for a Particular Application:

When choosing a microcontroller for a specific task, the following factors should be
considered:

1. Application Requirements:

e Determine whether it needs data processing, control, communication, or sensor
interfacing.

e Choose 8-bit, 16-bit, or 32-bit MCU based on task complexity.

2. Number of I/O Pins:

e Based on how many sensors, switches, displays, or other devices you want to
connect.

3. Memory Requirements:

e RAM (for variables) and Flash/ROM (for code).

e Larger programs or real-time tasks require more memory.

4. Clock Speed (Performance):

e Higher clock = faster processing.

AVAILABLE AT

http://www.onebyzeroedu.com

Select based on whether your task is time-sensitive (e.g., motor control, signal
processing).

. Power Consumption:

Important for battery-powered devices.

Look for low-power or ultra-low-power MCUs (e.g., MSP430, ATmega).

. Timers, Counters, ADC/DAC, PWM:

Select MCU based on peripherals needed:
o ADC for analog sensors
o PWM for motor or LED brightness control

o UART/SPI/I2C for communication

. Cost and Availability:

Choose one that fits your budget and is easily available in the market.

. Development Tools and Community Support:

Availability of compilers, simulators, IDEs (like Arduino IDE, MPLAB).

Strong community or documentation helps with debugging and learning.

. Packaging and Size:

For compact devices, choose smaller packages (e.g., SMD).

AVAILABLE AT

http://www.onebyzeroedu.com

e Depends on physical space constraints of the system.

10. Operating Voltage and Temperature Range:

e Must match with sensors and devices used.

e Important for industrial or outdoor applications.

"4 Summary (For Revision):
Factor Consideration

Bit width (8/16/32-bit) Task complexity

I/O ports Number of devices to connect
Memory Code/data storage needs

Clock speed Performance requirement

Peripherals ADC, PWM, communication ports, etc.
Power Battery-operated systems?

Cost & availability Budget and supply

Tools & support IDE, libraries, examples

Package type Size and mounting constraints

Environment suitability =~ Voltage, temperature limits

Let me know if you want this translated into Bengali, formatted into a PDF, or explained with
diagrams/examples!

c. Differentiate between Memory mapped 10 and IO mapped IO with reference to 8085
Microprocessors.

AVAILABLE AT

http://www.onebyzeroedu.com

Here is a detailed differentiation between Memory-Mapped 1/0 and 1/0-Mapped 1/O with

reference to the 8085 microprocessor:

("4 Memory-Mapped 1/0 vs 1/0-Mapped 1/0 in 8085

Microprocessor

Feature / Criteria

1. Addressing Uses memory address space

Space Used

2. Instruction Set All memory-related instructions (e.g.,
Used LDA, STA, MOV M, A)can access I/O
devices

3. Address Lines All 16 address lines (A0—-A15) are used

Used

4. Addressable 64 KB devices (as large as memory
Range space)

5. Control Uses MEMR and MEMW control signals

Signals Used

6. Data Transfer = Can perform arithmetic/logical
Flexibility operations directly on I/O data

7. Speed Slightly slower, as treated like memory

8. Memory Reduces available memory space

Interference

9. Interface More complex circuitry required

Circuit

+ Example (8085 Assembly)

Memory-Mapped 1/O:

Memory-Mapped 1/O

I/0-Mapped I/O (Isolated
1/0)

Uses separate 1/10
address space

Only specific 110
instructions (IN and
OUT) are used

Only 8 address lines
(A0-A7) are used

256 1/0O devices (2° = 256
ports)

Uses IOR and IOW control
signals

Cannot perform such
operations directly on I/O
data

Faster, as dedicated I/O
instructions are used

Does not affect memory
space

Simpler interface due to
dedicated signals

LDA 2000H ; Load data from 1/O device mapped at memory location 2000H

MOV B, A ; Move to register B

1/0-Mapped 1/O:

AVAILABLE AT

http://www.onebyzeroedu.com

INO5H ; Read data from I/O port number 05H
OUT 06H ; Send data to I/O port number 06H

+ Conclusion:

e Memory-mapped I/O is powerful when you need a large number of 1/0 devices and
wish to use all memory instructions.

e |/O-mapped I/O is simpler and efficient when the number of I/O devices is limited
(within 256).

Let me know if you'd like a diagram, Bengali version, or MCQ/viva questions on this topic!

6. a) What is recursion? Write an assembly language program for calculating the factorial of
5. [4] b) Write short notes on: i) Logical Shift ii) Arithmetic Shift iii) ROL iv) ROR [8]

Here is a complete answer for Question 6(a):

{4 6(a) What is Recursion?

+ Definition:

Recursion is a programming technique where a function calls itself either directly or
indirectly to solve a problem.

Each recursive call handles a smaller sub-problem, and the solution is built from base
case(s) upwards.

It continues until it reaches a base condition, which stops further calls.

+ Example (Factorial in C):

int factorial(int n) {
if (n <= 1) return 1;
return n * factorial(n - 1);

}

AVAILABLE AT

http://www.onebyzeroedu.com

{74 Assembly Language Program to Calculate Factorial
of 5

Since 8086 Assembly doesn't support recursion natively like high-level languages, we
simulate recursion using the stack.

Here's a simple non-recursive version using a loop to calculate factorial of 5:

M Program: Factorial of 5 in 8086 Assembly (Non-recursive)

.MODEL SMALL
.STACK 100H

.DATA
FACTORIAL_RESULT DW ?

.CODE

MAIN:
MOV AX, @DATA
MOV DS, AX

MOV CX, 5 ; Counter = 5 (5!)
MOV AX, 1 ; Initialize result = 1

FACTORIAL_LOOP:

MUL CX ; AX= AX* CX
LOOP FACTORIAL_LOOP

MOV FACTORIAL_RESULT, AX ; Store result (120 for 5!)
; Display Result (optional for DOS, not shown here)
MOV AH, 4CH

INT 21H
END MAIN

Explanation:

e MOV CX, 5:setsupalooptomultiply5x4x3x2x1,

AVAILABLE AT

http://www.onebyzeroedu.com

e MUL CX:multiplies AX by CX in each iteration.
e | OOP decreases CX and jumps back until CX = 0.

e Theresult (120) is stored in FACTORTIAL_RESULT.

If you want a recursive version using stack operations (advanced), | can provide that too.
Would you like it?
Also, let me know if you need a Bengali version or flowchart for better understanding.

Here are short notes on the four shift and rotate operations in assembly (mainly for 8086 or
similar microprocessors):

"4 i) Logical Shift

e Definition: Bits in a byte or word are shifted left or right, and the vacated bit
positions are filled with 0.

e Types:
o SHL (Shift Left Logical): Multiplies the number by 2.
o SHR (Shift Right Logical): Divides the number by 2 (for unsigned values).

e Use: Used mainly for unsigned numbers.

Example:

MOV AL, 00010100B ; AL = 20
SHL AL, 1 ; AL = 00101000B = 40 (logical left shift)

("4 ii) Arithmetic Shift

e Definition: Similar to logical shift, but preserves the sign bit (MSB) during right
shift.

AVAILABLE AT

http://www.onebyzeroedu.com

e Types:
o SAL (Shift Arithmetic Left): Same as SHL (multiplies by 2).

o SAR (Shift Arithmetic Right): Divides signed number by 2, sign bit stays the
same.

e Use: Used for signed numbers.

Example:

MOV AL, 11100000B ; AL = -32 (in 2's complement)
SAR AL, 1 ; AL = 11110000B = -16 (arithmetic right shift)

("4 iii) ROL (Rotate Left)
e Definition: Bits are rotated left; the MSB (bit 7) is moved to LSB (bit 0).

e Use: For circular rotation, used in encryption or bit manipulation.

Example:

MOV AL, 10010011B
ROL AL, 1 ; AL=00100111B

{4 iv) ROR (Rotate Right)
e Definition: Bits are rotated right; the LSB (bit 0) is moved to MSB (bit 7).

e Use: Useful in bitwise operations and cryptographic routines.

Example:

MOV AL, 10010011B
ROR AL, 1 ; AL =11001001B

Let me know if you want a diagram, truth table, or Bengali version for these operations!

a) Draw the architecture of 8255. Describe the operating modes of 8255. [6] b) What do you
mean by programmable peripheral interface (PPI1)? Mention the role of 8255 PPI. [3] c) Write

AVAILABLE AT

http://www.onebyzeroedu.com

assembly code statement for each of the high level language assignments statements. [3] i)
A=B*C-5/D ii) B=(A-C)*D/7

Here's a complete answer to your questions regarding the Intel 8255 Programmable
Peripheral Interface (PPI) and corresponding assembly code translation:

a) Draw the Architecture of 8255 and Describe the Operating Modes

Architecture of 8255:

+ +
| Data Bus Buffer | <-----> 8-bit Data Bus
+ +
I
+ +
| Read/Write Control |
+ +
|
+ +
| Control Logic |
+ +

+-—— +-—— + - +-—-- + +-—-- +-—— +

| Group A || Control || Group B |
| (PortA)||Word || (PortB) |

+ ++ ++ +
| Port A || PortC (U)| | PortB |
+ ++ ++ +
| Port C (L) |
N — +

e Port A: 8-bit I/O port (can work in Mode 0, 1, or 2)
e Port B: 8-bit I/O port (can work in Mode 0 or 1)

e Port C: Split into upper (PC7-PC4) and lower (PC3—-PCO0); used as control/status or
general I/O.

e Control Word Register: Stores control word to define modes/direction.

e Read/Write Control Logic: Interprets control signals like RD, WR, CS.

AVAILABLE AT

http://www.onebyzeroedu.com

Operating Modes of 8255:
8255 has 3 main operating modes:

1. Mode 0 (Basic Input/Output):
o Simple I/O.
o No handshaking.
o Ports A, B, and C used for data.
o Output latched, input not latched.
2. Mode 1 (Strobed Input/Output):
o Handshaking I/O.
o Uses Port A or B with corresponding PC lines for control and status.
o Input: Data valid, strobe, acknowledge.
o Output: Output buffer full, strobe, acknowledge.
3. Mode 2 (Bidirectional Data Transfer):
o Only for Port A.
o Bidirectional communication with handshaking.

o Useful in inter-processor communication.

b) What is Programmable Peripheral Interface (PPI)? Role of 8255

Programmable Peripheral Interface (PPI):

e A PPIlis an integrated circuit used to interface peripheral devices (like keyboards,
displays, ADCs) with a microprocessor system.

e |t allows the processor to read input from or write output to external devices in a
programmable way.

Role of 8255 PPI:

AVAILABLE AT

http://www.onebyzeroedu.com

e Acts as a bridge between microprocessor and peripheral devices.

e Offers 24 programmable I/O lines grouped as Port A, Port B, and Port C.
e Supports various data transfer modes (simple, interrupt, handshake).

e Reduces CPU overhead in managing I/O operations.

e Widely used in industrial control systems, instrumentation, and embedded
systems.

c) Assembly Code for High-Level Statements

We assume that you're writing for the 8085/8086 architecture, and all variables are stored in
registers. Let's write pseudo-assembly considering general-purpose registers:

i)A=B*C-5/D

High-Level Statement:
A=B*C-5/D

Assume:

e B - register B
e C - register C
e D - register D

e A - register A

Assembly Code (8086-like Pseudocode):
MOV AL, B ; Load B into AL

MUL C ; AL =AL * C, result in AX
MOV BX, AX : Save result in BX

MOV AL, 5 : Load 5
MOV AH, 0 : Clear AH
DIV D ;AL=5/D

SUB BX, AX ;BX=(B*C) - (5/D)
MOV A, BL : Store final result to A

AVAILABLE AT

http://www.onebyzeroedu.com

ii)B=(A-C)*D/7

High-Level Statement:
B=(A-C)*D /7

Assume:

e A - register A

e C - register C

e D - register D

e B - register B

Assembly Code (8086-like Pseudocode):

MOV AL, A ; Load A
SUB AL, C ;AL=A-C

MOV AH, 0 : Clear AH for MUL
MUL D ;AX=(A-C)*D

MOV BL, 7 ; Divisor 7
DIV BL ;AL =result/7

MOV B, AL : Store final result to B

Note:

e These are not exact instructions for any specific microcontroller. For 8085, MUL and
DIV are not available—you would need software routines.

e This is simplified to show logic flow assuming high-level capabilities.

Let me know if you need 8255 pin diagram or example in 8085-specific format.

4. a) Explain how LOOP Instruction works in assembly language? Write an assembly
language program for For Loop to show the "CSE Department" as reverse string. [5] b) How
instruction affect the Flags: SUB AX, BX [AX=90h, BX=30h] ADD AL, BL [AL=30h, BL=70h]

[2]

AVAILABLE AT

http://www.onebyzeroedu.com

Here's the detailed explanation and solution for your question on LOOP instruction,
reverse string printing, and flag effects in Assembly Language:

4. a) LOOP Instruction & For Loop Program
How LOOP Instruction Works:

e LOOP is used to repeat a block of code a certain number of times.

e |t automatically decrements the CX register and jumps to the given label if CX =
0.

Syntax:

LOOP label

The instruction sequence:

MOV CX, count ; Initialize loop counter
label:
; Code to repeat
LOOP label ; Decrements CX and loops if CX =0

Assembly Program: Display "CSE Department” in Reverse
Assume you're using 8086 Assembly and the string is stored in memory.

Goal: Print "CSE Department" in reverse:
Output: tnemtrapeD ESC

.MODEL SMALL
.STACK 100H

.DATA
msg DB "CSE Department$" ;'$'indicates end for DOS INT 21h AH=09h

.CODE
MAIN PROC

AVAILABLE AT

http://www.onebyzeroedu.com

MOV AX, @DATA
MOV DS, AX

; Find string length manually (13 chars, including space)
MOV SI, OFFSET msg

MOV CX, 13 ; length of string

ADD SI, CX ; Point Sl to end of string

DEC SI ; Adjust to point to last character (not '$")
PRINT_LOOP:

MOV DL, [Sl] ; Load character

MOV AH, 02H ; Function to display char

INT 21H ; Call DOS interrupt

DEC SI ; Move to previous character

LOOP PRINT_LOOP ; Loop until CX =0

; Exit program
MOV AH, 4CH
INT 21H
MAIN ENDP
END MAIN

4. b) How Instructions Affect Flags
Instruction 1: SUB AX, BX
Given:

e AX=90h
e BX=30h

e Operation: AX = AX - BX = 96h - 36h = 60h

Affected Flags:

e Zero Flag (ZF): 0 (Result is not zero)
e Sign Flag (SF): 0 (60h is positive)
e Carry Flag (CF): 0 (No borrow)

e Overflow Flag (OF): 0 (No signed overflow)

AVAILABLE AT

http://www.onebyzeroedu.com

e Auxiliary Carry (AF): May be affected, depending on low nibble borrow

e Parity Flag (PF): Depends on result bits; 60h = 01100000 — even parity — PF =1

Instruction 2: ADD AL, BL

Given:
e AL =30h
e BL=70h

e Operation: AL = AL + BL = 36h + 76h = A®h

Affected Flags:

e Zero Flag (ZF): 0 (AOh # 0)

e Sign Flag (SF): 1 (AOh has MSB = 1 — negative in signed context)

e Carry Flag (CF): 0 (No carry from MSB)

e Overflow Flag (OF): 1 (Signed overflow: +48 + +112 = -96 — invalid)
e Auxiliary Carry (AF): May be 1 (0x0 + 0x0 + carry from bit 3)

e Parity Flag (PF): 1 (AOh = 10100000 — even number of 1s)

Let me know if you'd like a version for 8085, or an explanation with flag tables.

a) What is physical memory? A memory location has physical address (80FD2h). In what
segment it have offset BFD2h? [4] b) Discuss how an array can be declared in 8086
processor with DUP. [4] c) Explain the concept of cache memory in microprocessors. What
are its advantages, and how is it implemented in the system? [4] d) What do you mean by
odd address bank and even address bank? How to address them using available prominent
approach. [5]

AVAILABLE AT

http://www.onebyzeroedu.com

