

2019-20

8

A.a) Short notes on various types of jumping instruction: [6] i) Signed Conditional Jumps ii)
Unsigned Conditional Jumps iii) Single Flag Jumps

Here is a short note on the various types of jumping instructions in assembly language
(particularly in x86 architecture):

i) Signed Conditional Jumps

●​ These jumps are used when working with signed numbers (positive or negative).​

●​ They depend on the sign (SF), overflow (OF), and zero (ZF) flags.​

●​ Common signed jump instructions:​

○​ JG / JNLE – Jump if greater (ZF = 0 and SF = OF)​

○​ JL / JNGE – Jump if less (SF ≠ OF)​

○​ JGE / JNL – Jump if greater or equal (SF = OF)​

○​ JLE / JNG – Jump if less or equal (ZF = 1 or SF ≠ OF)​

ii) Unsigned Conditional Jumps

●​ These are used when working with unsigned numbers (only positive).​

●​ They depend on the carry (CF) and zero (ZF) flags.​

●​ Common unsigned jump instructions:​

○​ JA / JNBE – Jump if above (CF = 0 and ZF = 0)​

○​ JB / JNAE – Jump if below (CF = 1)​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

○​ JAE / JNB – Jump if above or equal (CF = 0)​

○​ JBE / JNA – Jump if below or equal (CF = 1 or ZF = 1)​

iii) Single Flag Jumps

●​ These jumps are based on the value of a single flag.​

●​ Common single-flag jump instructions:​

○​ JE / JZ – Jump if equal / zero (ZF = 1)​

○​ JNE / JNZ – Jump if not equal / not zero (ZF = 0)​

○​ JC – Jump if carry (CF = 1)​

○​ JNC – Jump if no carry (CF = 0)​

○​ JS – Jump if sign (SF = 1)​

○​ JNS – Jump if no sign (SF = 0)​

○​ JO – Jump if overflow (OF = 1)​

○​ JNO – Jump if no overflow (OF = 0)​

Let me know if you need examples or a diagram for better understanding!

Here are examples for each type of jumping instruction:

✅ i) Signed Conditional Jump Example
MOV AX, 5
CMP AX, -3
JG greater_label ; Jump if greater (signed comparison)

greater_label:
; AX is greater than -3 (signed), this code executes

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

📌 Here, JG (Jump if Greater) considers signed values. Since 5 > -3, it jumps.

✅ ii) Unsigned Conditional Jump Example
MOV AX, 5
CMP AX, 250
JA above_label ; Jump if above (unsigned comparison)

above_label:
; AX is above 250 (unsigned), but since 5 < 250, it won’t jump

📌 JA checks unsigned comparison. Since 5 < 250 in unsigned, it doesn't jump.

✅ iii) Single Flag Jump Example
MOV AX, 10
SUB AX, 10 ; AX = 0, so Zero Flag (ZF) is set
JE equal_label ; Jump if equal (ZF = 1)

equal_label:
; Executes because AX == 0, so ZF = 1

📌 JE (Jump if Equal) checks only the Zero Flag (ZF).

Let me know if you'd like to simulate this with step-by-step flag changes or memory
status!

B.) Write an assembly language program for comparing two string and concatenating two
string

Here are two simple 8086 Assembly Language Programs using MASM/TASM syntax:

✅ 1. Program to Compare Two Strings
This program compares two strings and sets a flag if they are equal.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

.MODEL SMALL

.STACK 100H

.DATA
 STR1 DB 'HELLO$', 0
 STR2 DB 'HELLO$', 0
 MSG_EQUAL DB 'Strings are equal$'
 MSG_NOTEQUAL DB 'Strings are not equal$'

.CODE
MAIN:
 MOV AX, @DATA
 MOV DS, AX

 LEA SI, STR1 ; Point SI to first string
 LEA DI, STR2 ; Point DI to second string

COMPARE_LOOP:
 MOV AL, [SI]
 MOV BL, [DI]
 CMP AL, '$' ; End of string?
 JE END_COMPARE
 CMP AL, BL
 JNE NOT_EQUAL
 INC SI
 INC DI
 JMP COMPARE_LOOP

NOT_EQUAL:
 LEA DX, MSG_NOTEQUAL
 JMP DISPLAY

END_COMPARE:
 LEA DX, MSG_EQUAL

DISPLAY:
 MOV AH, 09H
 INT 21H

 MOV AH, 4CH
 INT 21H
END MAIN

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

✅ 2. Program to Concatenate Two Strings

.MODEL SMALL
.STACK 100H

.DATA
 STR1 DB 'HELLO ', 0
 STR2 DB 'WORLD$', 0
 CONCAT DB 20 DUP('$') ; Empty buffer to store concatenated result

.CODE
MAIN:
 MOV AX, @DATA
 MOV DS, AX
 MOV ES, AX ; Use ES for output buffer

 LEA SI, STR1
 LEA DI, CONCAT

COPY_STR1:
 MOV AL, [SI]
 CMP AL, 0
 JE COPY_STR2
 MOV [DI], AL
 INC SI
 INC DI
 JMP COPY_STR1

COPY_STR2:
 LEA SI, STR2

COPY_LOOP2:
 MOV AL, [SI]
 CMP AL, '$'
 JE END_DISPLAY
 MOV [DI], AL
 INC SI
 INC DI
 JMP COPY_LOOP2

END_DISPLAY:
 MOV BYTE PTR [DI], '$'
 LEA DX, CONCAT
 MOV AH, 09H
 INT 21H

 MOV AH, 4CH

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

 INT 21H
END MAIN

💡 Notes:

●​ $ is used as a string terminator for DOS INT 21H function 09H.​

●​ Strings must be null-terminated or $-terminated based on how you plan to process
them.​

●​ These programs work in 8086 real mode, suitable for emulators like DOSBox or
EMU8086.​

Would you like these programs explained step-by-step?

7. a) What is Microcontroller? What are the advantages and disadvantages of
Microcontroller? [4]

Sure! Here's a comprehensive and detailed explanation of the question:

✅ 7(a) What is a Microcontroller? What are the
Advantages and Disadvantages of Microcontroller?

🔹 What is a Microcontroller?

A Microcontroller (often abbreviated as MCU – Microcontroller Unit) is a compact
integrated circuit (IC) designed to govern a specific operation in an embedded system. It is
a self-contained system with a processor core, memory, and programmable input/output
peripherals.

It is sometimes referred to as a “computer on a chip” because it contains all essential
elements of a computer on a single IC. Microcontrollers are typically used in automated
systems, such as:

●​ Home appliances (washing machines, microwave ovens)​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ Consumer electronics (TV remote, digital camera)​

●​ Automobiles (airbags, anti-lock braking system)​

●​ Industrial control systems​

●​ Robotics​

●​ IoT (Internet of Things) devices​

🔸 Basic Components of a Microcontroller:

1.​ CPU (Central Processing Unit) – Executes instructions and controls operations.​

2.​ RAM (Random Access Memory) – Temporary memory for data storage during
program execution.​

3.​ ROM/Flash – Non-volatile memory to store the program.​

4.​ I/O Ports – Interface with external devices such as sensors, switches, motors,
displays.​

5.​ Timers and Counters – For timing operations and event counting.​

6.​ Serial Communication Interface – UART, SPI, I2C for external communication.​

7.​ ADC/DAC (Analog to Digital / Digital to Analog Converters) – Interface with
analog signals.​

8.​ Interrupt System – To handle events like keypress or sensor input efficiently.​

🔹 Advantages of Microcontroller:

1.​ 🔸 Compact and Cost-Effective:​

○​ Combines CPU, memory, and I/O on a single chip.​

○​ Reduces size and cost of the system.​

○​ No need for additional external components for most tasks.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

2.​ 🔸 Low Power Consumption:​

○​ Ideal for battery-powered or energy-sensitive devices.​

○​ Many microcontrollers have power-saving modes (sleep/idle).​

3.​ 🔸 Real-Time Performance:​

○​ Can respond quickly to input/output changes in real-time systems.​

○​ Interrupt-driven processing allows quick response to critical events.​

4.​ 🔸 Easy to Interface with Peripherals:​

○​ Built-in GPIO (General Purpose Input/Output) pins and communication
protocols make it easy to connect with external devices like sensors, LEDs,
motors, etc.​

5.​ 🔸 Reliable for Repetitive Tasks:​

○​ Excellent for controlling repetitive or fixed-function applications like motor
control or signal monitoring.​

6.​ 🔸 Wide Availability and Range:​

○​ Available in many variants (8-bit, 16-bit, 32-bit).​

○​ Manufacturers like Intel, Microchip, Atmel, STMicroelectronics provide a wide
variety of MCUs.​

🔹 Disadvantages of Microcontroller:

1.​ 🔸 Limited Processing Power:​

○​ Generally not designed for heavy computation or multitasking.​

○​ Not suitable for running complex operating systems or applications.​

2.​ 🔸 Restricted Memory:​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

○​ RAM and ROM are limited, which restricts the size of code and data handling
capabilities.​

3.​ 🔸 Limited Number of I/O Pins:​

○​ A fixed number of I/O ports makes it less flexible for complex I/O-heavy
applications.​

4.​ 🔸 Fixed Architecture:​

○​ Most MCUs come with a fixed set of peripherals and architecture.​

○​ Difficult to upgrade hardware features once selected.​

5.​ 🔸 Less Flexible than Microprocessors:​

○​ Microcontrollers are good for specific tasks but not general-purpose
computing.​

6.​ 🔸 Slower Clock Speeds:​

○​ To reduce power consumption, they typically operate at lower clock speeds
than microprocessors.​

🔹 Difference Between Microcontroller and Microprocessor (Brief):

Feature Microcontroller Microprocessor

Components CPU, RAM, ROM, I/O on one chip Only CPU (others external)

Application Embedded/control systems General-purpose computing

Power Consumption Low Higher

Size Small Larger (requires
peripherals)

Cost Low Higher

🔹 Popular Microcontroller Families:

●​ 8051 series – Basic 8-bit MCUs, widely used for educational and control
applications.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ AVR (e.g., ATmega328) – Used in Arduino boards.​

●​ PIC (by Microchip) – Widely used in industrial and consumer products.​

●​ ARM Cortex-M – 32-bit MCUs used in high-performance embedded systems (e.g.,
STM32 series).​

●​ MSP430 (by Texas Instruments) – Known for ultra-low power consumption.​

🔹 Applications of Microcontroller:

1.​ Washing Machines, Microwave Ovens​

2.​ Air Conditioners and Refrigerators​

3.​ Digital Cameras and Smart Watches​

4.​ Smart Home Devices (IoT)​

5.​ Car Engine Control Units (ECU), Airbags​

6.​ Industrial Automation​

7.​ Robotics​

8.​ Medical Devices (ECG, glucose meters)​

9.​ Mobile Phones and Remote Controllers​

10.​Elevators and Vending Machines​

🔚 Conclusion:

Microcontrollers are essential building blocks of modern electronic systems due to their
compactness, low power, and real-time control capabilities. While they have some
limitations in processing power and memory, their benefits in embedded and dedicated
tasks far outweigh the drawbacks.

b) What is the difference between timer and counter of a microcontroller? List the factors to
be considered for selection of microcontroller for particular application.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Here is a complete and detailed answer for Question 7(b):

✅ (b) What is the Difference Between Timer and
Counter of Microcontroller?

🔹 Timer:

●​ A timer is a device that counts internal clock pulses to measure time intervals.​

●​ It is used to generate delays, control real-time events, or measure time duration.​

●​ Works with the microcontroller’s internal clock frequency (e.g., 1 MHz, 16 MHz).​

Example Use: Delay generation, time measurement, periodic interrupt generation.

🔹 Counter:

●​ A counter is a device that counts external events or pulses applied to an input pin.​

●​ It is used for event counting, such as the number of external pulses, sensor
activations, or revolutions of a motor shaft.​

●​ Works with external signals rather than internal clock.​

Example Use: Counting how many times a button is pressed, RPM measurement,
frequency counting.

🔸 Difference Table:

Feature Timer Counter

Input Source Internal clock External event (via pin)

Main Use Measure time/delay Count occurrences of events

Example
Application

Generating delays, real-time
clocks

Frequency/rate measurement

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Trigger Source Clock cycles External pulses (rising/falling
edge)

Controlled by Internal programming External hardware signals

✅ Factors to be Considered for Selection of
Microcontroller for a Particular Application:
When choosing a microcontroller for a specific task, the following factors should be
considered:

🔸 1. Application Requirements:

●​ Determine whether it needs data processing, control, communication, or sensor
interfacing.​

●​ Choose 8-bit, 16-bit, or 32-bit MCU based on task complexity.​

🔸 2. Number of I/O Pins:

●​ Based on how many sensors, switches, displays, or other devices you want to
connect.​

🔸 3. Memory Requirements:

●​ RAM (for variables) and Flash/ROM (for code).​

●​ Larger programs or real-time tasks require more memory.​

🔸 4. Clock Speed (Performance):

●​ Higher clock = faster processing.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ Select based on whether your task is time-sensitive (e.g., motor control, signal
processing).​

🔸 5. Power Consumption:

●​ Important for battery-powered devices.​

●​ Look for low-power or ultra-low-power MCUs (e.g., MSP430, ATmega).​

🔸 6. Timers, Counters, ADC/DAC, PWM:

●​ Select MCU based on peripherals needed:​

○​ ADC for analog sensors​

○​ PWM for motor or LED brightness control​

○​ UART/SPI/I2C for communication​

🔸 7. Cost and Availability:

●​ Choose one that fits your budget and is easily available in the market.​

🔸 8. Development Tools and Community Support:

●​ Availability of compilers, simulators, IDEs (like Arduino IDE, MPLAB).​

●​ Strong community or documentation helps with debugging and learning.​

🔸 9. Packaging and Size:

●​ For compact devices, choose smaller packages (e.g., SMD).​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ Depends on physical space constraints of the system.​

🔸 10. Operating Voltage and Temperature Range:

●​ Must match with sensors and devices used.​

●​ Important for industrial or outdoor applications.​

✅ Summary (For Revision):

Factor Consideration

Bit width (8/16/32-bit) Task complexity

I/O ports Number of devices to connect

Memory Code/data storage needs

Clock speed Performance requirement

Peripherals ADC, PWM, communication ports, etc.

Power Battery-operated systems?

Cost & availability Budget and supply

Tools & support IDE, libraries, examples

Package type Size and mounting constraints

Environment suitability Voltage, temperature limits

Let me know if you want this translated into Bengali, formatted into a PDF, or explained with
diagrams/examples!

c. Differentiate between Memory mapped IO and IO mapped IO with reference to 8085
microprocessors.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Here is a detailed differentiation between Memory-Mapped I/O and I/O-Mapped I/O with
reference to the 8085 microprocessor:

✅ Memory-Mapped I/O vs I/O-Mapped I/O in 8085
Microprocessor

Feature / Criteria Memory-Mapped I/O I/O-Mapped I/O (Isolated
I/O)

1. Addressing
Space Used

Uses memory address space Uses separate I/O
address space

2. Instruction Set
Used

All memory-related instructions (e.g.,
LDA, STA, MOV M, A) can access I/O
devices

Only specific I/O
instructions (IN and
OUT) are used

3. Address Lines
Used

All 16 address lines (A0–A15) are used Only 8 address lines
(A0–A7) are used

4. Addressable
Range

64 KB devices (as large as memory
space)

256 I/O devices (2⁸ = 256
ports)

5. Control
Signals Used

Uses MEMR and MEMW control signals Uses IOR and IOW control
signals

6. Data Transfer
Flexibility

Can perform arithmetic/logical
operations directly on I/O data

Cannot perform such
operations directly on I/O
data

7. Speed Slightly slower, as treated like memory Faster, as dedicated I/O
instructions are used

8. Memory
Interference

Reduces available memory space Does not affect memory
space

9. Interface
Circuit

More complex circuitry required Simpler interface due to
dedicated signals

🔹 Example (8085 Assembly)

🔸 Memory-Mapped I/O:
LDA 2000H ; Load data from I/O device mapped at memory location 2000H
MOV B, A ; Move to register B

🔸 I/O-Mapped I/O:

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

IN 05H ; Read data from I/O port number 05H
OUT 06H ; Send data to I/O port number 06H

🔹 Conclusion:

●​ Memory-mapped I/O is powerful when you need a large number of I/O devices and
wish to use all memory instructions.​

●​ I/O-mapped I/O is simpler and efficient when the number of I/O devices is limited
(within 256).​

Let me know if you'd like a diagram, Bengali version, or MCQ/viva questions on this topic!

6. a) What is recursion? Write an assembly language program for calculating the factorial of
5. [4] b) Write short notes on: i) Logical Shift ii) Arithmetic Shift iii) ROL iv) ROR [8]

Here is a complete answer for Question 6(a):

✅ 6(a) What is Recursion?

🔹 Definition:

Recursion is a programming technique where a function calls itself either directly or
indirectly to solve a problem.​
 Each recursive call handles a smaller sub-problem, and the solution is built from base
case(s) upwards.

🔁 It continues until it reaches a base condition, which stops further calls.

🔹 Example (Factorial in C):
int factorial(int n) {
 if (n <= 1) return 1;
 return n * factorial(n - 1);
}

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

✅ Assembly Language Program to Calculate Factorial
of 5
Since 8086 Assembly doesn't support recursion natively like high-level languages, we
simulate recursion using the stack.

Here's a simple non-recursive version using a loop to calculate factorial of 5:

🖥 Program: Factorial of 5 in 8086 Assembly (Non-recursive)
.MODEL SMALL
.STACK 100H

.DATA
 FACTORIAL_RESULT DW ?

.CODE
MAIN:
 MOV AX, @DATA
 MOV DS, AX

 MOV CX, 5 ; Counter = 5 (5!)
 MOV AX, 1 ; Initialize result = 1

FACTORIAL_LOOP:
 MUL CX ; AX = AX * CX
 LOOP FACTORIAL_LOOP

 MOV FACTORIAL_RESULT, AX ; Store result (120 for 5!)

 ; Display Result (optional for DOS, not shown here)

 MOV AH, 4CH
 INT 21H
END MAIN

🔸 Explanation:

●​ MOV CX, 5: sets up a loop to multiply 5 × 4 × 3 × 2 × 1.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ MUL CX: multiplies AX by CX in each iteration.​

●​ LOOP decreases CX and jumps back until CX = 0.​

●​ The result (120) is stored in FACTORIAL_RESULT.​

If you want a recursive version using stack operations (advanced), I can provide that too.
Would you like it?​
 Also, let me know if you need a Bengali version or flowchart for better understanding.

Here are short notes on the four shift and rotate operations in assembly (mainly for 8086 or
similar microprocessors):

✅ i) Logical Shift

●​ Definition: Bits in a byte or word are shifted left or right, and the vacated bit
positions are filled with 0.​

●​ Types:​

○​ SHL (Shift Left Logical): Multiplies the number by 2.​

○​ SHR (Shift Right Logical): Divides the number by 2 (for unsigned values).​

●​ Use: Used mainly for unsigned numbers.​

Example:

MOV AL, 00010100B ; AL = 20
SHL AL, 1 ; AL = 00101000B = 40 (logical left shift)

✅ ii) Arithmetic Shift

●​ Definition: Similar to logical shift, but preserves the sign bit (MSB) during right
shift.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ Types:​

○​ SAL (Shift Arithmetic Left): Same as SHL (multiplies by 2).​

○​ SAR (Shift Arithmetic Right): Divides signed number by 2, sign bit stays the
same.​

●​ Use: Used for signed numbers.​

Example:

MOV AL, 11100000B ; AL = -32 (in 2's complement)
SAR AL, 1 ; AL = 11110000B = -16 (arithmetic right shift)

✅ iii) ROL (Rotate Left)

●​ Definition: Bits are rotated left; the MSB (bit 7) is moved to LSB (bit 0).​

●​ Use: For circular rotation, used in encryption or bit manipulation.​

Example:

MOV AL, 10010011B
ROL AL, 1 ; AL = 00100111B

✅ iv) ROR (Rotate Right)

●​ Definition: Bits are rotated right; the LSB (bit 0) is moved to MSB (bit 7).​

●​ Use: Useful in bitwise operations and cryptographic routines.​

Example:

MOV AL, 10010011B
ROR AL, 1 ; AL = 11001001B

Let me know if you want a diagram, truth table, or Bengali version for these operations!

a) Draw the architecture of 8255. Describe the operating modes of 8255. [6] b) What do you
mean by programmable peripheral interface (PPI)? Mention the role of 8255 PPI. [3] c) Write

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

assembly code statement for each of the high level language assignments statements. [3] i)
A=B*C-5/D ii) B=(A-C)*D/7

Here's a complete answer to your questions regarding the Intel 8255 Programmable
Peripheral Interface (PPI) and corresponding assembly code translation:

a) Draw the Architecture of 8255 and Describe the Operating Modes

Architecture of 8255:
+------------------------+
| Data Bus Buffer | <-----> 8-bit Data Bus
+------------------------+
 |
+------------------------+
| Read/Write Control |
+------------------------+
 |
+------------------------+
| Control Logic |
+------------------------+
 | | |
+-----+-----+ +-----+-----+ +-----+-----+
| Group A | | Control | | Group B |
| (Port A) | | Word | | (Port B) |
+-----------+ +-----------+ +-----------+
| Port A | | Port C (U)| | Port B |
+-----------+ +-----------+ +-----------+
 | Port C (L) |
 +------------+

●​ Port A: 8-bit I/O port (can work in Mode 0, 1, or 2)​

●​ Port B: 8-bit I/O port (can work in Mode 0 or 1)​

●​ Port C: Split into upper (PC7–PC4) and lower (PC3–PC0); used as control/status or
general I/O.​

●​ Control Word Register: Stores control word to define modes/direction.​

●​ Read/Write Control Logic: Interprets control signals like RD, WR, CS.​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Operating Modes of 8255:

8255 has 3 main operating modes:

1.​ Mode 0 (Basic Input/Output):​

○​ Simple I/O.​

○​ No handshaking.​

○​ Ports A, B, and C used for data.​

○​ Output latched, input not latched.​

2.​ Mode 1 (Strobed Input/Output):​

○​ Handshaking I/O.​

○​ Uses Port A or B with corresponding PC lines for control and status.​

○​ Input: Data valid, strobe, acknowledge.​

○​ Output: Output buffer full, strobe, acknowledge.​

3.​ Mode 2 (Bidirectional Data Transfer):​

○​ Only for Port A.​

○​ Bidirectional communication with handshaking.​

○​ Useful in inter-processor communication.​

b) What is Programmable Peripheral Interface (PPI)? Role of 8255

Programmable Peripheral Interface (PPI):

●​ A PPI is an integrated circuit used to interface peripheral devices (like keyboards,
displays, ADCs) with a microprocessor system.​

●​ It allows the processor to read input from or write output to external devices in a
programmable way.​

Role of 8255 PPI:

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ Acts as a bridge between microprocessor and peripheral devices.​

●​ Offers 24 programmable I/O lines grouped as Port A, Port B, and Port C.​

●​ Supports various data transfer modes (simple, interrupt, handshake).​

●​ Reduces CPU overhead in managing I/O operations.​

●​ Widely used in industrial control systems, instrumentation, and embedded
systems.​

c) Assembly Code for High-Level Statements

We assume that you're writing for the 8085/8086 architecture, and all variables are stored in
registers. Let's write pseudo-assembly considering general-purpose registers:

i) A = B * C - 5 / D

High-Level Statement:​
 A = B * C - 5 / D

Assume:

●​ B → register B​

●​ C → register C​

●​ D → register D​

●​ A → register A​

Assembly Code (8086-like Pseudocode):
MOV AL, B ; Load B into AL
MUL C ; AL = AL * C, result in AX
MOV BX, AX ; Save result in BX

MOV AL, 5 ; Load 5
MOV AH, 0 ; Clear AH
DIV D ; AL = 5 / D

SUB BX, AX ; BX = (B*C) - (5/D)
MOV A, BL ; Store final result to A

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

ii) B = (A - C) * D / 7

High-Level Statement:​
 B = (A - C) * D / 7

Assume:

●​ A → register A​

●​ C → register C​

●​ D → register D​

●​ B → register B​

Assembly Code (8086-like Pseudocode):
MOV AL, A ; Load A
SUB AL, C ; AL = A - C

MOV AH, 0 ; Clear AH for MUL
MUL D ; AX = (A - C) * D

MOV BL, 7 ; Divisor 7
DIV BL ; AL = result / 7

MOV B, AL ; Store final result to B

Note:

●​ These are not exact instructions for any specific microcontroller. For 8085, MUL and
DIV are not available—you would need software routines.​

●​ This is simplified to show logic flow assuming high-level capabilities.​

Let me know if you need 8255 pin diagram or example in 8085-specific format.

4. a) Explain how LOOP Instruction works in assembly language? Write an assembly
language program for For Loop to show the "CSE Department" as reverse string. [5] b) How
instruction affect the Flags: SUB AX, BX [AX=90h, BX=30h] ADD AL, BL [AL=30h, BL=70h]
[2]

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

Here's the detailed explanation and solution for your question on LOOP instruction,
reverse string printing, and flag effects in Assembly Language:

4. a) LOOP Instruction & For Loop Program

How LOOP Instruction Works:

●​ LOOP is used to repeat a block of code a certain number of times.​

●​ It automatically decrements the CX register and jumps to the given label if CX ≠
0.​

Syntax:​
​
 LOOP label

●​

The instruction sequence:​
​
 MOV CX, count ; Initialize loop counter
label:
 ; Code to repeat
 LOOP label ; Decrements CX and loops if CX != 0

●​

Assembly Program: Display "CSE Department" in Reverse

Assume you're using 8086 Assembly and the string is stored in memory.

Goal: Print "CSE Department" in reverse:​
 Output: tnemtrapeD ESC

.MODEL SMALL

.STACK 100H

.DATA
msg DB "CSE Department$" ; '$' indicates end for DOS INT 21h AH=09h

.CODE
MAIN PROC

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

 MOV AX, @DATA
 MOV DS, AX

 ; Find string length manually (13 chars, including space)
 MOV SI, OFFSET msg
 MOV CX, 13 ; length of string
 ADD SI, CX ; Point SI to end of string
 DEC SI ; Adjust to point to last character (not '$')

PRINT_LOOP:
 MOV DL, [SI] ; Load character
 MOV AH, 02H ; Function to display char
 INT 21H ; Call DOS interrupt
 DEC SI ; Move to previous character
 LOOP PRINT_LOOP ; Loop until CX = 0

 ; Exit program
 MOV AH, 4CH
 INT 21H
MAIN ENDP
END MAIN

4. b) How Instructions Affect Flags

Instruction 1: SUB AX, BX

Given:

●​ AX = 90h​

●​ BX = 30h​

●​ Operation: AX = AX - BX = 90h - 30h = 60h​

Affected Flags:

●​ Zero Flag (ZF): 0 (Result is not zero)​

●​ Sign Flag (SF): 0 (60h is positive)​

●​ Carry Flag (CF): 0 (No borrow)​

●​ Overflow Flag (OF): 0 (No signed overflow)​

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

●​ Auxiliary Carry (AF): May be affected, depending on low nibble borrow​

●​ Parity Flag (PF): Depends on result bits; 60h = 01100000 → even parity → PF = 1​

Instruction 2: ADD AL, BL

Given:

●​ AL = 30h​

●​ BL = 70h​

●​ Operation: AL = AL + BL = 30h + 70h = A0h​

Affected Flags:

●​ Zero Flag (ZF): 0 (A0h ≠ 0)​

●​ Sign Flag (SF): 1 (A0h has MSB = 1 → negative in signed context)​

●​ Carry Flag (CF): 0 (No carry from MSB)​

●​ Overflow Flag (OF): 1 (Signed overflow: +48 + +112 = -96 → invalid)​

●​ Auxiliary Carry (AF): May be 1 (0x0 + 0x0 + carry from bit 3)​

●​ Parity Flag (PF): 1 (A0h = 10100000 → even number of 1s)​

Let me know if you’d like a version for 8085, or an explanation with flag tables.

a) What is physical memory? A memory location has physical address (80FD2h). In what
segment it have offset BFD2h? [4] b) Discuss how an array can be declared in 8086
processor with DUP. [4] c) Explain the concept of cache memory in microprocessors. What
are its advantages, and how is it implemented in the system? [4] d) What do you mean by
odd address bank and even address bank? How to address them using available prominent
approach. [5]

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

