Lecture - 02:

Brief comparison of Computer Architecture and Computer

Organization:
Aspect Computer Architecture Computer Organization
Definition The design and functionality of a | How the components are
computer system. connected and work together
in the system.
Focus High-level design and structure of | Low-level details and how the
systems. system works.
Components Includes CPU, memory, and Includes hardware like buses,
input/output devices registers, and control units.
Level of More abstract and conceptual. More concrete and practica
Abstraction
Concerned Instruction sets, data formats, and | Hardware details, circuit
With system capabilities. design, and physical
connections.
Examples Processor Design and Memory RAM, ROM, cache memory,
hierarchy and how they interact
Goal To define what the computer can | To define how the computer

do.

does it.

AVAILABLE AT

http://www.onebyzeroedu.com

Definitions:

RISC (Reduced Instruction Set Computer):

RISC is a type of computer architecture that uses a small set of simple instructions.
It focuses on executing instructions at high speed by using a fixed instruction
format and optimizing the pipeline. RISC architectures are designed to perform
operations quickly and efficiently, often requiring more instructions to accomplish
tasks compared to CISC.

CISC (Complex Instruction Set Computer):

CISC is a type of computer architecture that has a large set of complex instructions.
These instructions can execute multiple operations in a single instruction, allowing
for more powerful commands. CISC architectures aim to minimize the number of
instructions per program, potentially making the coding process easier but at the
cost of slower execution.

AVAILABLE AT

http://www.onebyzeroedu.com

Differences Between RISC and CISC

Aspect

Instruction Set

Instruction
Length

Execution
Speed

Complexity

Programming
Style

Memory Usage

Pipeline
Efficiency

Examples

RISC

Small and simple set of
instructions.

Fixed-length instructions (e.g.,
32 bits).

Generally faster due to simpler
instructions and pipelining.

Simpler design; easier to
optimize.

More instructions required for
the same task.

Tends to use more memory for
code.

Highly efficient due to simpler
instructions.

ARM, MIPS, PowerPC.

AVAILABLE AT

CISC

Large and complex set of
instructions.

Variable-length instructions
(e.g., 1 to 15 bytes).

Can be slower due to
complex instruction
decoding.

More complex design; can be
harder to optimize.

Fewer instructions needed
for programming tasks.

Tends to use less memory for
code.

Less efficient due to
instruction complexity.

x86, VAX, Intel 8086.

http://www.onebyzeroedu.com

Definition of Pipeline

Pipeline:

In computing, a pipeline is a technique used to improve the performance of a
processor by allowing multiple instructions to be executed simultaneously at
different stages of processing. Instead of completing one instruction before starting
the next, the pipeline divides the execution process into discrete stages, such as
instruction fetch, decode, execute, and write back. This means that while one
instruction is being executed, another can be decoded, and a third can be fetched,
increasing the overall throughput of the processor.

Key Points

e Stages: Typical stages in a pipeline include Instruction Fetch (IF),
Instruction Decode (ID), Execute (EX), Memory Access (MEM), and Write
Back (WB).

e Parallelism: Pipelines exploit instruction-level parallelism by overlapping
the execution of multiple instructions.

e Throughput: The primary goal of pipelining is to increase the number of
instructions processed in a given time, thus improving overall performance.

Pipelining is a fundamental concept in modern CPU design, allowing for more
efficient processing and faster execution of programs.

TRSNRA (Pipeline):

FEISGE, TR 9F(6 aﬂ\ﬁo T ACTIES FIFTTOT TSI Sy TI2© 2,
1 231 far T afFIeaes 2 |<uw T 932 W FAFI FAS Olcj\NI\") @
A6 T Tl AT DT ST ! AT BF AT FE, MNRFTRA ST (Ao
T fAoe I, (TIAF QT a2 (Instruction Fetch), fS@TG (Decode), EARE TS|
(Execute), 93 (FTATH Sy J@FF (Write Back) | 97 M T (T I4F 936 fweT
FFF (7, BV AEF0 0T (GG FAT 202 AT ToIIb MRIT FAT 2%, T
OIS STREF 2656 G |

AVAILABLE AT

http://www.onebyzeroedu.com

T AILIR:

o STAITR: ARSI SNHFTS AT 9% (IF), [fS@G (ID), FHFAT
(EX), (TSI ST (MEM), 432 (14T 35 @1 (WB) J89 & AT |

o SIHCTITSN: ARATRASI T NPT SEF AATENTAC S SR FE
IFIEF AU FHFAE ST FE|

o 2FTD: TRIAMREA 3 T 2 [0 I AFIF© fAO0TE AT ST,
T NNIF FAFHO] &F6 2|

TRSeNEfe: S CPU FEENREF AF6 G LT, JT AFS FRFH A H A
A3 (FTNEE Po FHFNHSTH Fely Aeihe (77 |

Hazards in Pipelining

Hazards in pipelining refer to situations that prevent the next instruction in the
pipeline from executing in the designated clock cycle. Hazards can lead to pipeline
stalls, reducing the efficiency gains achieved through pipelining. There are three
main types of hazards:

1. Structural Hazards:
o Occur when hardware resources are insufficient to support all active
pipeline stages.
o For example, if a single memory unit is shared between instruction
fetch and data access, the pipeline may be unable to fetch a new
instruction while simultaneously reading or writing data.

2. Data Hazards:

AVAILABLE AT

http://www.onebyzeroedu.com

o Occur when an instruction depends on the result of a previous
instruction that has not yet completed.
o There are three subtypes:

m Read After Write (RAW): An instruction needs to read a value
that a previous instruction has not yet written.

m Write After Read (WAR): An instruction tries to write a value
before a previous instruction has read it.

m Write After Write (WAW): Two instructions attempt to write
to the same location, causing potential data loss or incorrect
results.

3. Control Hazards:
o Occur due to branch instructions that alter the flow of execution.
o If the pipeline fetches the next instruction before the branch decision
is known, it may fetch the wrong instruction, causing a misprediction.

STRSR {45 (Hazards in Pipelining):

RIERE 5% (R a5 AHHZfe I7 ARTREF Tg76! foaw=6 fosfifae afeq
SREE AP 2(© 1T (97| FA9SfT AR SbeT (ofd Fa00 ME, I
STRAETRAR T1E] Wfde PO @ TN FE | THTS o ¥I@F 9% T

1. SETFEIET f45% (Structural Hazards):
o TN GIINF ToBfel ¥ NFT ARTART "I T FIF &y
JT JT|
o TURATIF, I AF6 9FF (TAF TG AT 9% 978 (THT
SR N BT FAT 2T, OF TR AQ [A@ T IT FA®
ST R(© AN I A6 952 AT (GBI ST 7 (7] FA®|
2. (GGI 3% (Data Hazards):
o T A T 9Ff6 TITS! FNUCTA HNHETF S frox F
A3 T 2F(A |
o a7 foaft SINEa TE®:
n T AHET TRG (Read After Write - RAW): AF(6 T ase
A6 T TG® 1T I AHM6 6! fIw T 923 (FTfe|

AVAILABLE AT

http://www.onebyzeroedu.com

m T30 AH6F T (Write After Read - WAR): aF(6 I T ase
A6 T AT (GBT FE I 936 JHT! [T TGTF ST
m TG AHLIE ARG (Write After Write - WAW): 96 T 932
"I (AT (681 3, I TEITS (SO o 19 Hel%eTd 5
FH© A
3. P& {95 (Control Hazards):
o 1 A ISferd ST TG I FRFEF TR AHI6F FEF |
o 4 ARTTRT 12 RIS A AT TTTo! Ao AT IFE, B afe
e fo@ G 517 FA0© AE, J7 AF16 T TS 538 FE|

Control Hazards and Their Impact on Pipeline Performance

Control hazards occur when branch instructions disrupt the normal flow of
execution in a pipeline. Their impact on performance includes:

1. Stalls: The pipeline may need to wait to determine the branch outcome,
causing delays and wasted clock cycles.

2. Wrong Path Execution: Speculatively executing instructions after a branch
can lead to incorrect instruction execution, resulting in wasted resources.

Summary

Control hazards decrease pipeline efficiency by increasing latency and reducing
throughput. Techniques like branch prediction are used to mitigate these effects.

AVAILABLE AT

http://www.onebyzeroedu.com

AVAILABLE AT: .
Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

