
Computer Peripheral & Interfaces
(Introduction) from A Sahu Deptt. of Comp. Sc. & Engg. IIT Guwahati

P R E S E N T E D B Y : G R O U P - 0 1

M E M B E R S :

• S a r n a D a s (2 0 C S E 0 0 1)

• N a z m a A k t e r A n i (2 0 C S E 0 0 2)

• T a n v i r A h m e d (2 0 C S E 0 0 4)

• M d . A s a d M o n d a l l (2 0 C S E 0 0 6)

• Z a h i d u l I s l a m R o n y (2 0 C S E 0 3 0)

• J a n n a t u l F e r d a u s (2 0 C S E 0 2 5)

P R E S E N T E D T O :

D r . T a n i a I s l a m

A s s i s t a n t P r o f e s s o r , D e p t o f

C S E , U n i v e r s i t y o f B a r i s h a l

Outline
• Introduction

• Linux Kernel Split View

• Motivation

• Dolby Digital

• HD Cinema

• MI TECH 2010: Nvid ia

GPUs

• MI Tech 2010: USB 3.0

• MI Tech 2010: Bluetooth 4.0

• Peripherals Controller Migration

• Why Migration?

• Moorestown Platform

• Intel Centrino Processor

• Intel Atom Processor

Introduction

Computer system

1. Internal {Processor and Memory(RAM)}

2. Peripheral (Disk, Display, Audio System, Ethernet

Card)

Interface:

 connects Internal and peripheral devices.

 Two Types:

Intermediate Hardware: Nvdia GPU Card, Creative

Sound Blaster

Intermediate Software: Nvdia GPU Driver, Sound

Blaster Driver Software

Introduction

More Examples

Intermediate Hardware

• Timer: Measures time intervals.

• Counter: Counts the number of events

• DMA (Direct Memory Access): directly access memory

• USB (Universal Serial Bus): Used for connection, communication and power supply

• UART (Universal Asynchronous Receiver/Transmitter): Handle asynchronous serial

communication.

• Peripheral Controller: Manages peripheral devices.

More Examples

Intermediate Software/Programs

• Device Driver (Linux): A specific type of software that allows the operating system

to control hardware.

• Assembly Code: Low level programming language

Introduction

Peripheral Component Interconnect (PCI):

• Audio card

• VGA (Video Graphic Array) card

• Ethernet Card

Low level signal + high level C code (Combination of these two helps the interface to control

hardware)

Linux Kernel Split View

In a Unix system, several concurrent

processes attend to different tasks. Each

process asks for system resources, be it

computing power, memory, network

connectivity, or some other resource. The

kernel is the big chunk of executable code

in charge of handling all such requests.

Though the distinction between the different

kernel tasks isn’t always clearly marked, the

kernel’s role can be split, as shown in

Figure

A split view of the kernel

Linux Kernel Split View

These 5 parts of Kernel split execute various

roles.

1. Process management

2. Memory management

3. Filesystems

4. Device control

5. Networking

A split view of the kernel

Motivation

1. Knowledge: both hardware & software

2. Exact interface: Architecture & OS

Hardware Software

Internal External(Peripher
al)

System Application

Motherboard,
CPU, RAM, Hard
Drive

Mouse, Keyboard,
Microphone

Operating
System,
Language
Processor,
Device Driver

Web browser,
facebook,
Instagram etc

Architecture OS

• Von-Neumann Architecture
• Harvard Architecture
• Instruction Set Architecture

Windows, linux , macOS, Unix,
Android etc

Motivation

3. Used in many places (Computer +Embedded System

• An embedded system

A specialized computer designed to perform specific tasks within a larger

device or system, like controlling a washing machine or a car's engine.

4. Highly paid job in industries IBMNVIDIAIntel

5. Low level signal + Device drivers

Low level signal Device drivers

directly control hardware components enable the operating system to
communicate with and control
hardware devices.

0 or 1, High voltage or Low voltage

Motivation
6. Knowledge of simple peripherals

(Display, Audio, Disk drives, Ethernet) In connection with 8085/8086

Display Audio Disk Drivers Ethernet

memory-mapped I/O ,
port-mapped I/O

PWM (Pulse Width
Modulation) signals

programmed I/O or
DMA

transmitted/received
via I/O ports or
memory-mapped
registers

7-segment displays or
CRTs

floppy disk controller
(FDC)

Intel 82586

7. Peripheral are powerful than main computing

Advanced Peripherals & Technologies

• Linux/Windows Device Drivers.

• Dolby Digital Stereo, HD Cinema, Dolby Atmos (present), USB 3.0, USB 4.0 (present).

• Graphics cards (Nvidia with 480 core) , RTX (Ray Tracing eXtreme)- 40 series, GTX (Giga Texel

Shader eXtreme)-16 series by NVIDIA (present).

Motivation

8. Use of old technology in newer devices

• Intel Atom processor (PII technology with modification)

• Use of winXP in mobile; may be obsolete for PC in very short

9. Combining peripheral controller in main computing for low power

1. Intel Centrino have wireless controller functionality inside processor chip

2. Intel atom 45x have DDR2 memory controller + Graphics controller in inside

processor chip in very short

Dolby Digital

Dolby Stereo:

 It is a unified brand for two completely different basic

systems: the Dolby SVA (stereo variable-area) 1976 system

used with optical sound tracks on 35mm film, and Dolby

Stereo 70mm noise reduction on 6-channel magnetic

soundtracks on 70mm prints.

 Humans have two eyes to measure the depth of image which

can be called a stereo image.

Stereo Ear Phone

Dolby digital audio placement technology can deliver high-quality audio even at lower bitrates

and realistic surround sound compared to plain audio

Dolby Digital
Dolby Lab:

 It supports up to 5.1 channels of surround sound.

 It can deliver more directional sound effects than stereo audio.

 5 ear-level speakers & 1 subwoofer. 5 channels have 20 Hz – 20,000 Hz.1 channel have

20 Hz – 120 Hz.

 5 ear-level channels are 3 front channel (Left, Center, Right) provide clean dialogue &

accurate placement of on-screen sounds & the 2 surround channels (Left surround, Right

surround)

 Low Frequency channel (LFE) called ".1 channel," delivers deep, powerful bass effects

that can be felt as well as heard.

 Max bit rate: 560 bit/s

Dolby Digital

Dolby HD:

 It supports up to 7.1 channels of surround sound.

 7 ear-level speakers & 1 subwoofer.

 Max bit rate:18MB/s

HD Cinema
Video specification:

 Frame rate . 30 frames/sec

 1 Hour video size (Based on resolution) .

• VGA (Video Graphic Array) (640 x 480) pixels: Uncompressed size: 199 GB,

Compressed size: 450 MB

• 720P (1280 × 720) pixels Uncompressed size: 597 GB Compressed size: 1.2

GB

• 1080P/i(1920 × 1080) pixels Uncompressed size: 1.35 TB Compressed size:

2.4 GB

File formats:

 MP2: Typically used for DVD & broadcasting. It is an older but reliable format.

 MP4: One of the most common video formats, ideal for streaming.

 MKV: It can contain multiple audio, video, subtitle tracks, all within a single file. It's

often referred to as a ‘Matryoshka’ or ‘Nested doll’.

HD Cinema

Cinema resolution:

 Old 2k(2048×1080): It is used in digital cinema, specially for older or low budget

production.

 New 4k(4096×2160): It is standard for high end digital cinema offering extremely high

video quality.

Projection technologies :

 Digital Light Processing (DLP): It is developed by Texas Instruments. This technology

uses micro-mirrors to project images. It is widely used in projectors, including cinema

projectors for bright & vivid images.

HD Cinema

Projection technologies :

 Liquid Crystal on Silicon (LCOS): It is a reflective display technology that allows

rapid switching of light for display projection purposes. It is a better version than

LCD & DLP technology. It produces very bright & high resolution images used in

large high definition screens.

 Silicon X-tal Reflective Display (SXRD): It is the evolution of LCOS technology,

developed by Sony. It offers high resolution & contrast, used in high end projectors

& cinema display

MI TECH 2010: Nvidia GPUs

Nvidia GPUs are powerful graphics

processing units designed primarily for

rendering images, videos, and

animations for display

Structure:

 CUDA (Compute Unified Device

Architecture) Cores: The grid-like

structure in the diagram represents

CUDA cores, which are parallel

processing units within the GPU.

MI TECH 2010: Nvidia GPUs

 Thread Scheduler: The green bar at the top labeled "Thread

Scheduler" is responsible for managing and dispatching tasks (threads)

to the CUDA cores.

 Atomic Units (in light blue) are responsible for managing operations

that require access to shared memory without interference from other

processing threads, ensuring data consistency.

 Tex L2 (Texture Level 2) units (in orange) handle texture data, which is used in rendering

images and graphics.

 Memory: The blocks labeled "Memory" (in blue) represent the GPU’s memory,

MI TECH 2010: Nvidia GPUs

Key Features:

 Nvidia GTX295: Equipped with 480 CUDA cores, which are parallel

processors used for tasks such as rendering graphics, computational

simulations, and other data-intensive tasks.

 VGA (Video Graphics Array): Capable of supporting resolutions up to

2048x1536. Supports dual-monitor setup, providing flexibility for multiple

displays.

 HD Cinema & MKV File Playback: Supports high-definition cinema viewing

and can play MKV files, which are commonly used for high-quality video

storage.

MI Tech 2010: USB 3.0
USB 3.0 is a major upgrade over previous USB versions, offering significantly faster data

transfer speeds and better efficiency in handling devices connected to computers.

Key Features:

 SuperSpeed Bus: USB 3.0 introduced the "SuperSpeed" mode, which allows for much faster

data transfer compared to USB 2.0..

 Enhanced Host Controller Interface (EHCI): With USB 3.0, the EHCI was enhanced to

support higher speeds and better performance.

Register-level Interface: Maintains compatibility with older USB 2.0 devices while also

supporting the new features of USB 3.0.

SATA HDD Integration: USB 3.0 could work with SATA hard drives, allowing for faster data

transfers, particularly for external storage devices.

 Transfer Mode: USB 3.0 supports transfer speeds up to 5.0 Gbit/s, which is roughly 400

MB/s. The previous version speed was 480 Mbit/s.

MI Tech 2010: USB 3.0

Technical Aspects:

 8B/10B Encoding: A method of encoding data to ensure reliable transmission by

balancing the number of 1s and 0s sent over the cable.

 Linear Feedback Shift Register (LFSR) Scrambling: This technique helps in reducing

electromagnetic interference, which can affect the quality of data transmission.

 Spread Spectrum: This is used to spread the signal over a wider bandwidth, which also

helps in reducing interference and improves signal integrity.

 Receivers and Equalization: Advanced receivers in USB 3.0 include mechanisms for

periodic signaling and dynamic equalization, ensuring that data is accurately received

and processed, even in challenging conditions.

MI Tech 2010: Bluetooth 4.0

Bluetooth 4.0, introduced in 2010, marked a significant advancement in wireless

communication technology, offering improved features like higher data transfer rates, lower

power consumption, and enhanced connectivity options.

Key Features:

1. Classic Bluetooth: Operates at a frequency of 2.4 GHz using Frequency Hop Spread

Spectrum (FHSS). Offers a typical range of about 1 meter and data transfer rates of up to

3 MB/s.

2. Bluetooth High Speed: This feature is based on Wi-Fi technology, allowing for much

faster data transfer rates than previous versions of Bluetooth. Ideal for applications

requiring quick data exchange.

3. Bluetooth Low Energy (BLE): A major addition in Bluetooth 4.0, BLE is designed for

devices that need to operate on very low power.

Overview

What do meant by peripherals controller migration

Why is the Peripherals Controller Migration necessary

Architecture of the Moorestown platform

Intel Centrino Processor and Intel Atom

Processor with functionality

Peripherals Controller Migration

Peripherals Controller Migration

Cards on motherboard
 Graphics

 Audio

 Modem

Onboard

 Inside Processor

 Graphics

 Memory Controller

Why Migration?

Key Aspects :

 Hardware Upgrade

 Platform or Architecture Shift like x86-based system to ARM based

system

 Consolidation

Why Important?

 Performance Improvement: Offer better performance, more features, or

support for newer peripherals.

 Cost Efficiency: Can more efficient use of system resources.

 Compatibility: Older controllers may no longer support new peripherals,

necessitating a migration to maintain compatibility.

Lincroft System on a Chip (SoC): It

features a LPIA (Low Power Intel

Architecture) CPU core (Silverthorne

derivative), on-die graphics and on-die

memory controller.

Langwell South Hub : Langwell is

composed of a system controller, solid

state disk controller and I/O blocks for

things like USB or audio.

Moorestown Platform

Moorestown Platform

PMIC : The Power Management IC

(PMIC) plays a mystery role at this point.

Intel is just revealing that it handles power

management for the platform yet not fully

detailing its active roles.

Evans Peak Networking: The final

component of Moorestown is the Evans

Peak networking hub, which is made up of

Intel and non-Intel silicon.

PCI Express* x16 Interface:
Supports the latest high-

performance graphics cards.

Intel High Definition (HD)

Audio: Integrated audio support

enables premium sound and

delivers advanced features such as

multiple audio streams.

 5X better wireless performance

 Longer Battery Life

Intel Centrino Processor

 Old Pentium architecture with modification (Low power addition) : 10Watt

 Inside processor chip

 Graphics processor, Memory controller

 Wireless controller (Centrino Atom)

Intel Atom Processor

Thank You!!

We Are Looking For Questions.

A Sahu

Deptt. of Comp. Sc. & Engg.

IIT Guwahati

Review of Computer Architetcure

Outline

Computer organization Vs Architecture

Processor architecture

 Pipeline architecture

 Data, resource and branch hazards

 Superscalar & VLIW architecture

 Memory hierarchy

 Reference

Computer organization Vs Architecture

Comp Organization => Digital Logic Module

Logic and Low level

============================

Comp Architecture = > ISA Design, MicroArch Design

Algorithm for

 Designing best micro architecture,

 Pipeline model,

 Branch prediction strategy, memory management

 Etc…..

Hardware abstraction

Main

memory
bridgeBus interface

ALU

Register file

CPU

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display
Disk

I/O bus Expansion slots for

other devices such

as network adapters

PC

Hardware/software interface

software

hardware

C++

m/c instr

reg, adder

transistors

Arch. focus

 Instruction set architecture

Lowest level visible to a programmer

 Micro architecture

Fills the gap between instructions and logic modules

Assembly Language View

Processor state (RF, mem)

 Instruction set and encoding

Layer of Abstraction

Above: how to program

machine - HLL, OS

Below: what needs to be built -

tricks to make it run fast

ISA

Compiler OS

CPU
Design

Circuit
Design

Chip
Layout

Application
Program

Instruction Set Architecture

The Abstract Machine

Programmer-Visible State

 PC Program Counter

Register File

heavily used data

Condition Codes

PC

Registers

CPU
Memory

Code + Data
Addresses

Data

Instructions
Stack

Condition

Codes

Memory

Byte array

Code + data

stack

ALU

Instructions
Language of Machine

Easily interpreted

primitive compared to HLLs

Instruction set design goals

maximize performance,

minimize cost,

reduce design time

Instructions

 All MIPS Instructions: 32 bit long, have 3 operands

 Operand order is fixed (destination first)

Example:

C code: A = B + C

MIPS code: add $s0, $s1, $s2

(associated with variables by compiler)

 Registers numbers 0 .. 31, e.g.,

$t0=8,$t1=9,$s0=16,$s1=17 etc.

 000000 10001 10010 01000 00000 100000
op rs rt rd shamt funct

Instructions LD/ST & Control
 Load and store instructions

 Example:

C code: A[8] = h + A[8];

MIPS code: lw $t0, 32($s3)

add $t0, $s2, $t0

sw $t0, 32($s3)

 Example: lw $t0, 32($s2)

35 18 9 32

op rs rt 16 bit number

 Example:

if (i != j) beq $s4, $s5, Lab1

h = i + j; add $s3, $s4, $s5

else j Lab2

h = i - j; Lab1: sub $s3, $s4, $s5

Lab2: ...

What constitutes ISA?
 Set of basic/primitive operations

 Arithmetic, Logical, Relational, Branch/jump, Data movement

 Storage structure – registers/memory

 Register-less machine, ACC based machine, A few special purpose

registers, Several Gen purpose registers, Large number of registers

 How addresses are specified

 Direct, Indirect, Base vs. Index, Auto incr and auto decr, Pre (post)

incr/decr, Stack

 How operand are specified

 3 address machine r1 = r2 + r3, 2 address machine r1 = r1 + r2

 1 address machine Acc = Acc + x (Acc is implicit)

 0 address machine add values on (top of stack)

 How instructions are encoded

RISC vs. CISC

 RISC

 Uniformity of instructions,

 Simple set of operations and addressing modes,

 Register based architecture with 3 address instructions

 RISC: Virtually all new ISA since 1982

 ARM, MIPS, SPARC, HP’s PA-RISC, PowerPC, Alpha,

CDC 6600

 CISC : Minimize code size, make assembly language easy

VAX: instructions from 1 to 54 bytes long!

Motorola 680x0, Intel 80x86

MIPS subset for implementation

Arithmetic - logic instructions

add, sub, and, or, slt

Memory reference instructions

lw, sw

Control flow instructions

beq, j

Incremental changes in the design to include
other instructions will be discussed later

Design overview

Regis te rs

Re gis ter #

Da ta

Re gis ter #

Da ta
memory

Addres s

Da ta

Re gis ter #

PC Ins truction ALU

Ins truction
memory

Addres s

 Use the program counter (PC) to supply
instruction address

 Get the instruction from memory

 Read registers

 Use the instruction to decide exactly what to do

Division into data path and control

CONTROLLER

control

signals

status

signals

Building block types
Two types of functional units:

 elements that operate on data values (combinational)

output is function of current input, no memory

Examples
 gates: and, or, nand, nor, xor, inverter ,Multiplexer,

decoder, adder, subtractor, comparator, ALU, array
multipliers

 elements that contain state (sequential)

output is function of current and previous inputs

state = memory

Examples:

 flip-flops, counters, registers, register files, memories

Components for MIPS subset

Register,

Adder

ALU

Multiplexer

Register file

Program memory

Data memory

Bit manipulation components

Components - register

PC

clock

32 32

Components - adder

32

32

32

PC+4

offset

+

32

32

32

PC

4

+

Components - ALU

32

32

32

operation

result

a

b

ALU

a=b

overflow

Components - multiplexers

0

mux

1

32

32

PC+4

PC+4+offset 32

select

Components - register file

Reg Write

Registers
Write
re gis ter

Read
data 1

Read

data 2

Read
re gis ter 1

Read
re gis ter 2

Write
data

Data

Data

Regis ter

numbers

5

5

5

Components - program memory

Instruction
memory

Ins tructio n
a ddre s s

Ins tructio n

MIPS components - data memory

Me m R e a d

Me m Write

Data
memory

Write
da ta

R e a d
d a ta

Ad dre s s

Components - bit manipulation circuits

Sign

xtend

16 32

shift
32 32

0

LSB

MSB

LSB

MSB

MIPS subset for implementation

Arithmetic - logic instructions

add, sub, and, or, slt

Memory reference instructions

lw, sw

Control flow instructions

beq, j

Datapath for add,sub,and,or,slt

 Fetch instruction

 Address the register file

 Pass operands to ALU actions

 Pass result to register file required

 Increment PC

Format: add $t0, $s1, $s2

000000 10001 10010 01000 00000 100000
op rs rt rd shamt funct

P
C

IM

ad
ins

Fetching instruction

P
C

IM

ad
ins

RF

rad1

rad2

wad

wd

rd1

rd2

ins[25-21]

ins[20-16]

Addressing RF

P
C

IM

ad
ins

RF

rad1

rad2

wad

wd

rd1

rd2

A
L

U

ins[25-21]

ins[20-16]

Passing operands to ALU

P
C

IM

ad
ins

RF

rad1

rad2

wad

wd

rd1

rd2

A
L

U

ins[25-21]

ins[20-16]

ins[15-11]

Passing the result to RF

P
C

IM

ad
ins

RF

rad1

rad2

wad

wd

rd1

rd2

A
L

U

+4

ins[25-21]

ins[20-16]

ins[15-11]

Incrementing PC

Load and Store instructions

 format : I

 Example: lw $t0, 32($s2)

35 18 9 32

op rs rt 16 bit number

P
C

IM

ad
ins

RF

rad1

rad2

wad

wd

rd1

rd2

DM

ad rd

wd

A
L

U

+4

ins[25-21]

ins[20-16]

ins[15-11]

Adding “sw” instruction

0

1
sxins[15-0]

16

P
C

IM

ad
ins

RF

rad1

rad2

wad

wd

rd1

rd2

DM

ad rd

wd

A
L

U

+

sx

0

1

0

1

4

ins[25-21]

ins[20-16]

ins[15-11]

ins[15-0]

16

Adding “lw” instruction

1

0

P
C

IM

ad
ins

RF

rad1

rad2

wad

wd

rd1

rd2

DM

ad rd

wd

A
L

U

+

sx

0

1

1

0

0

1

4

ins[25-21]

ins[20-16]

ins[15-11]

ins[15-0]

16

Adding “beq” instruction

+

s2

0

1

P
C

IM

ad
ins

RF

rad1

rad2

wad

wd

rd1

rd2

DM

ad rd

wd

A
L

U
++ s2

sx

0

1

0

1

1

0

0

1

4

ins[25-21]

ins[20-16]

ins[15-11]

ins[15-0]

0

1

s2

ins[25-0]

PC+4[31-28]

ja[31-0]

28

16

Adding “j” instruction

P
C

IM

ad
ins

RF

rad1

rad2

wad

wd

rd1

rd2

DM

ad rd

wd

A
L

U
++ s2

sx

0

1

0

1

1

0

0

1

0

1

s2

4

Rdst

jmp

Z

MR

RW

ins[25-0]

ins[25-21]

ins[20-16]

ins[15-11]

ins[15-0]

PC+4[31-28]

ja[31-0]

28

16

Control signals

MW

op3

A
sr

c

Psrc

M
2R

P
C

IM

ad
ins

RF

rad1

rad2

wad

wd

rd1

rd2

DM

ad rd

wd

A
L

U
++ s2

sx

0

1

0

1

1

0

0

1

0

1

s2

4

Rdst

jmp

Psrc

Z

brn

MR

MW

M
2R

op

RW

A
sr

c

ins[25-0]

c
o

n
tr

o
l

ins[31-26]

ins[25-21]

ins[20-16]

ins[15-11]

ins[15-0]

A
c

tr
l

ins[5-0]

PC+4[31-28]

ja[31-0]

28

16

opc
2

3

Datapath + Control

Analyzing performance

Component delays

Register 0

Adder t+

ALU tA

Multiplexer 0

Register file tR

Program memory tI

Data memory tM

Bit manipulation components 0

Delay for {add, sub, and, or, slt}
P

C

IM

ad
ins

RF

rad1

rad2

wad

wd

rd1

rd2

A
L

U

+4

ins[25-21]

ins[20-16]

ins[15-11]

RARI tttt

t
max

Delay for {sw}
P

C

IM

ad
ins

RF

rad1

rad2

wad

wd

rd1

rd2

DM

ad rd

wd

A
L

U

+4

ins[25-21]

ins[20-16]

sxins[15-0]

16

MARI tttt

t
max

Clock period in single cycle design

tR

tRtM

tM

tR

tR

tR

tR

tA

tA

tA

tA

t+

t+

tI

tI

tI

tI

t+

tI

t+

tI

R-class

lw

sw

beq

j

clock

period

Clock period in multi-cycle design

tR

tRtM

tM

tR

tR

tR

tR

tA

tA

tA

tA

t+

t+

tI

tI

tI

tI

t+

tI

t+

tI

R-class

lw

sw

beq

j

clock

period

Cycle time and CPI

cycle timeshort long

low

high

CPI

single cycle

design

pipelined

design

multi-cycle

design

PIpelined datapath (abstract)
P

C

IM

ad
ins

RF

rad

wad

wd

rd1

rd2

DM

ad rd

wd

A
L

U
+

+4

IF ID EX Mem WB

IF/ID ID/EX EX/Mem Mem/WB

Fetch new instruction every cycle
P

C

IM

ad
ins

RF

rad

wad

wd

rd1

rd2

DM

ad rd

wd

A
L

U
+

+4

IF ID EX Mem WB

IF/ID ID/EX EX/Mem Mem/WB

Pipelined processor design
P

C

IM

ad
ins

RF

rad1

wad

wd

rd1

rd2

DM

ad rd

wd

A
L

U
+

+

4

0

1

1

0

0

1

s2

sx

1

0

rad2

co
nt

ro
l

A
ct

rl

0

1
0

bubble

IF/IDw

PCw

PCw=0

IF/IDw=0

bubble=1

flush

Graphical representation

IM RF DM

A
L

U RF

5 stage pipeline

IF ID EX Mem WB

stages

actions

Usage of stages by instructions

IM RF DM

A
L

U RF

IM RF DM

A
L

U RF

IM RF DM

A
L

U RF

IM RF DM
A

L
U RF

lw

sw

add

beq

Pipelining

IF D RF EX/AG M WB

• Faster throughput with pipelining

Simple multicycle design :

• Resource sharing across cycles

• All instructions may not take same cycles

Degree of overlap Depth
Serial

Overlapped

Pipelined

Shallow

Deep

Hazards in Pipelining

 Procedural dependencies => Control hazards

cond and uncond branches, calls/returns

 Data dependencies => Data hazards

RAW (read after write)

WAR (write after read)

WAW (write after write)

 Resource conflicts => Structural hazards

use of same resource in different stages

Data Hazards

delay = 3

previous

instr

current

instr

read/write

read/write

Structural Hazards

 Use of a hardware resource in

more than one cycle

 Different sequences of

resource usage by different

instructions

 Non-pipelined multi-cycle

resources

A B A C

A B A C

A B A C

A B C D

A C B D

F D X X

F D X X

Caused by Resource Conflicts

Control Hazards

delay = 5

branch

instr

next inline

instr

target

instr

cond eval

delay = 2

• the order of cond eval and target addr gen may be different

• cond eval may be done in previous instruction

target addr gen

Pipeline Performance

CPI = 1 + (S - 1) * b

Time = CPI * T / S

T

S stages

Frequency of interruptions - b

Improving Branch Performance

Branch Elimination

Replace branch with other instructions

Branch Speed Up

Reduce time for computing CC and TIF

Branch Prediction

Guess the outcome and proceed, undo if

necessary

Branch Target Capture

Make use of history

Branch Elimination

C

S

Use conditional instructions

(predicated execution)

T

F

C : S

OP1

BC CC = Z, + 2
ADD R3, R2, R1

OP2

OP1

ADD R3, R2, R1, NZ

OP2

Branch Speed Up :

Early target address generation

 Assume each instruction is Branch

 Generate target address while decoding

 If target in same page omit translation

 After decoding discard target address if

not Branch

IF IF IF D TIF TIF TIF

AGBC

Branch Prediction

 Treat conditional branches as

unconditional branches / NOP

 Undo if necessary

Strategies:

Fixed (always guess inline)

Static (guess on the basis of instruction

type)

Dynamic (guess based on recent history)

Static Branch Prediction

Instr % Guess Branch Correct

uncond 14.5 always 100% 14.5%

cond 58 never 54% 27%

loop 9.8 always 91% 9%

call/ret 17.7 always 100% 17.7%

Total 68.2%

Branch Target Capture

• Branch Target Buffer (BTB)
• Target Instruction Buffer (TIB)

instr addr pred stats target

target addr

target instr
prob of target change < 5%

BTB Performance

BTB miss

go inline

inline

BTB hit

go to target
decision

result target inline target

delay 0 5 4 0

.4 .6

.8 .2 .2 .8

.4*.8*0 + .4*.2*5 + .6*.2*4 + .6*.8*0 = 0.88 (Eff.Delay)

Compute/fetch scheme

I - cache

I

F

A

R

+

Instruction

Fetch address

Compute

BTA

BTA

IIFA

Next sequential

address

A I I + 1 I + 2 I + 3

BTI BTI+1 BTI+2 BTI+3

(no dynamic branch prediction)

BTAC scheme

I - cache

I

F

A

R

+

Instruction

Fetch address
BTA

IIFA

Next sequential

address

A I I + 1 I + 2 I + 3

BTI BTI+1 BTI+2 BTI+3

BTAC

BA BTA

Cache/

memory

Fetch

Unit Single multi-operation instruction

multi-operation instruction

FU FU FU

Register file

ILP in VLIW processors

Cache/

memory

Fetch

Unit
Multiple instruction

Sequential stream of instructions

FU FU FU

Register file

Decode

and issue

unit

Instruction/control

Data

FU Funtional Unit

ILP in Superscalar processors

slide 69

Why Superscalars are popular ?

Binary code compatibility among scalar &

superscalar processors of same family

 Same compiler works for all processors

(scalars and superscalars) of same family

Assembly programming of VLIWs is tedious

Code density in VLIWs is very poor -

Instruction encoding schemes

Hierarchical structure

Memory

CPU

Memory

S ize Cost / bitS peed

S mallest

Biggest

Highest

Lowest

Fastest

S lowest Memory

Data transfer between levels

Processor

Data are transferred

unit of transfer = block

access

hi

t

miss

Principle of locality & Cache Policies
 Temporal Locality

 references repeated in time

 Spatial Locality
 references repeated in space
 Special case: Sequential Locality

============================
 Read

 Sequential / Concurrent
 Simple / Forward

 Load
 Block load / Load forward / Wrap around

 Replacement
 LRU / LFU / FIFO / Random

Load policies

4 AU Block

Cache miss on AU 1

Block Load

Load Forward

Fetch Bypass

(wrap around

load)

0 1 2 3

Fetch Policies

Demand fetching

fetch only when required (miss)

Hardware prefetching

automatically prefetch next block

 Software prefetching

programmer decides to prefetch

questions:

how much ahead (prefetch distance)

how often

Write Policies

Write Hit

Write Back

Write Through

Write Miss

Write Back

Write Through

With Write Allocate

With No Write Allocate

Cache Types

Instruction | Data | Unified | Split

Split vs. Unified:

Split allows specializing each part

Unified allows best use of the capacity

On-chip | Off-chip

on-chip : fast but small

off-chip : large but slow

Single level | Multi level

References
1. Patterson, D A.; Hennessy, J L. Computer Organization and

Design: The Hardware/software Interface. Morgan Kaufman,

2000

2. Sima, T, FOUNTAIN, P KACSUK, Advanced Computer

Architectures: A Design Space Approach, Pearson Education,

1998

3. Flynn M J, Computer Architecture: Pipelined and Parallel

Processor Design, Narosa publishing India, 1999

4. John L. Hennessy, David A. Patterson, Computer

architecture: a quantitative approach, 2nd Ed, Morgan

Kauffman, 2001

Thanks

8085 Architecture &
Its Assembly language programming

P R E S E N T E D B Y: G R O U P - 0 3
M E M B E R S :

• S u m a i a I s l a m Ta j (2 0 C S E 0 3 4)

• M u a a z B i n Z a h i d (2 0 C S E 0 3 9)

• R a s h e d u l I s l a m (2 0 C S E 0 4 7)

• D e e p a n w i t a R o y (2 0 C S E 0 2 4)

• N u r e H a f s a S h e f a (2 0 C S E 0 1 8)

• A b d u l l a h A l M a h i n (2 0 C S E 0 3 1)

• M d . S a i f u z z a m a n A b h i (2 0 C S E 0 5 2)

• S a r a b a r Ta h u r a (2 0 C S E 0 2 9)

• N a h i d F o r h a d (2 0 C S E 0 2 0)

P R E S E N T E D TO :

D r. Ta n i a I s l a m

A s s i s t a n t

P r o f e s s o r , D e p t o f

C S E , U n i v e r s i t y o f

B a r i s h a l

Outline

• 8085 Era and Features

• 8085

• Pin diagram

• Block diagram (Data Path)

• Bus Structure

• Register Structure

• Instruction Set of 8085

• Sample program of 8085

• Simulator & Kit for 8085

8085 Microprocessor

• 8 Bit CPU

• 3-6Mhz

• Simpler design: Single Cycle CPU

• 40 Pin Dual line Package

• 16 bit address

• 6 registers: B, C, D, E, H,L

• Accumulator 8 bit

Note: Architecture of 8085 microprocessor - GeeksforGeeks

https://www.geeksforgeeks.org/architecture-of-8085-microprocessor/

8085 Pin diagram

8085 Microprocessor
Architecture

The Block
Diagram of 8085
Microprocessor

ALU

• ALU (Arithmetic and Logic Unit):

• Performs 8-bit operations such as addition,
subtraction, AND, OR, and XOR.

• Interacts with the Accumulator (ACC) and
Temporary Register (temp R).

Registers

• Accumulator (ACC)

• Temporary Register (tmp R): Used internally by the ALU during
operations.

• Flag Register

• W, Z Registers: Temporary storage.

• General-Purpose Registers

• Stack Pointer (SP) and Program Counter (PC)

Timing and Control Unit

• Synchronizes and controls the execution of
instructions.

• Generates necessary control signals (RD,
WR, ALE) and status signals (IO/M, S0, S1).

• Manages the clock cycles and fetch-execute
cycle for instructions.

Interrupt Control Unit

• Manages five interrupt signals: INTR,
RST5.5, RST6.5, RST7.5, TRAP.

• TRAP: Non-maskable interrupt with the
highest priority.

• RST5.5, RST6.5, RST7.5: Maskable,
vectored interrupts.

• INTR and INTA (Interrupt Acknowledge):
General-purpose interrupt and its
acknowledgement.

Serial I/O Control Unit

• Serial I/O Block:

• Facilitates serial communication through:

• SID (Serial Input Data): Receives serial
data.

• SOD (Serial Output Data): Sends serial
data.

• Used for communicating with serial
peripherals or data transfer over long
distances.

Data and Address Bus System

• Data Bus (8-bit):

• Transports 8-bit data between the
microprocessor and peripherals or memory.

• Address Bus (16-bit):

• Carries memory and I/O addresses to
access data or instructions.

• Add Buffer and Data/Address Latches:

• Temporarily store data and addresses to
manage timing during bus transactions.

Multiplexer and Program
Counter
• Multiplexer (MUX):

•

• Combines data inputs from various sources
like the registers and flags to pass them
onto the appropriate internal bus lines.

• Program Counter (PC):

•

• Holds the address of the next instruction to
be executed.

• Increments automatically as instructions
are executed.

The 8085 Bus Structure

8085
MPU

A15

A0

D0

D7

Address Bus (16bit)

Memory I/P

Data Bus (8bit)

O/P

Control Bus (8bit)

8085 Bus Structure
1.Address Bus: A collection of wires used to identify location in main

memory is called Address Bus. It is a group of 16 lines generally
marked as A0 to A15. It is unidirectional which flow from
microprocessor to Input Output devices. The address bus carries
address bits. It is used to identify IO peripheral or a memory location.

2.Data Bus: A collection of wires through which data is transmitted
from one part of a computer to another is called Data Bus. It is a
group of 8 lines used for data flow generally mark as D0 to D7. These
lines are bidirectional. This bus connects all the computer
components to the CPU and main memory. Data flow in both
directions between microprocessor and memory.

3.Control bus :

The control bus is a bidirectional bus that is used to carry control
signals between the microprocessor and other components such as
memory and I/O devices. It is used to transmit commands to the
memory or I/O devices

8085 Bus Structure
performing specific operations.

1. Memory read

2. Memory write

3. I/O read

4. I/O Write

5. Opcode fetch

Why use Bus organization in 8085 microprocessor ?

1. Memory access

2. I/O operations

3. Control signal transfer

4. DMA operations

8085 Registers
• (a) General Purpose Registers:

• Six general purpose 8-bit registers: B, C, D, E, H,L

• Combined as register pairs to perform 16-bit operations: BC,
DE, HL

• Registers are programmable (load, move, etc.)

Register 1

(b) Specific Purpose Registers –

Accumulator: an 8-bit register
Flag registers:5 flag registers are:
• Carry Flag (CF) : It occupies the zero th bit of the flag register.

If the arithmetic operation results in a carry(if result is more
than 8 bit), then Carry Flag is set; otherwise it is reset.

• Parity Flag (PF) : It occupies the second bit of the flag
register. This flag tests for number of 1’s in the accumulator. If
the accumulator holds even number of 1’s, then this flag is set
and it is said to even parity. On the other hand if the number
of 1’s is odd, then it is reset and it is said to be odd parity.

Register 2
• Auxiliary Carry Flag (AF) : AF = 1 if there is a carry out from

bit 3 on addition, or a borrow into bit 3 on subtraction.

• Sign Flag (SF) : It occupies the seventh bit of the flag register,
which is also known as the most significant bit. It helps the
programmer to know whether the number stored in the
accumulator is positive or negative. If the sign flag is set, it
means that number stored in the accumulator is negative, and
if reset, then the number is positive.

• Zero Flag (ZF) : It occupies the sixth bit of the flag register. It is
set, when the operation performed in the ALU results in
zero(all 8 bits are zero), otherwise it is reset. It helps in
determining if two numbers are equal or not.

Register 3

(c) Memory Registers – There are two 16-bit registers used to
hold memory addresses.

• Program Counter: This register is used to sequence the
execution of the instructions.

• Stack Pointer: It is used as a memory pointer. It points to a
memory location in read/write memory, called the stack.

How instruction executed
• All instructions (of a program) are stored in memory.

• To run a program, the individual instructions must be read from the
memory in sequence, and executed.

• Program counter puts the 16-bit memory address of the
instruction on the address bus

• Control unit sends the Memory Read Enable signal to access
the memory

• The 8-bit instruction stored in memory is placed on the data
bus and transferred to the instruction decoder

• Instruction is decoded and executed

Instruction Set of 8085
• Arithmetic Operations

• ADD, SUB, INR/DCR

• Example :’ ADD B’, ‘SUB C’

• Logical operation

• AND, OR, XOR, Rotate(RLC,RRC), Compare(CMP), Complement.

• Example : ‘CMP E’

• Branch operation

• Jump(JMP), CALL, Return(RET)

• Example : ‘JMP 2000H’

• Data transfer/Copy/Memory operation/IO

• MOV, MVI, LD, ST, OUT

• Example : ‘MOV A,B’

Copy/Mem/IO operation

• MVI R, 8 bit // load immediate data

Example: MVI A, 25H

• MOV R1, R2

Example : MOV B, A

• MOV R M // Copy to R from address pointed by (HL Reg)

Example : If HL points to ‘2000H’ , ‘MOV B,M’ load the contents of
‘2000H’ into register B.

• MOV M R // Copy from R to (HL Reg)

Example : If HL points to ‘2000H’ and B has ‘05H’, ‘MOV M,B’ stores ‘05H’
at memory location ‘2000H’

Copy/Mem/IO operation

• LDA 16 bit // load A from (16bit)

Example: ‘LDA 2000H’

• STA 16 bit // Store A to (16bit)

Example : ‘STA 2000H’

• LDAX Rp // Load A from address pointed by (Rp) Rp=Register
Pair

Example : If BC = 3000H, ‘LDAX B’ loads A with the contents of
memory location 3000H.

• STAX Rp // Store A to (Rp)

Example : If DE = 4000H and A = 0AH, ‘STAX D’ stores 0AH at memory
location 4000H.

• LXI Rp 16bit // load immediate to Rp

Example : ‘LXI H, 3000H’

Arithmetic Operation

• ADD R (Add Register to Accumulator) // SUB R (Subtract Register from Accumulator)

- Description: This instruction adds the content of a specified register (B, C, D, E, H, L) to
the Accumulator (A). The result is stored in the Accumulator..

- Syntax: ADD R

- Example: If A = 05H and B = 03H, after executing ADD B, A will become 08H.

• ADI 8-bit (Add Immediate to Accumulator) // SUI 8-bit (Subtract Immediate from
Accumulator)

- Description: This instruction adds an 8-bit immediate value to the Accumulator. The
result is stored in the Accumulator.

- Syntax: ADI 20H (data)

- Example: If A = 05H and the immediate data is 03H, after executing ADI 03H, A will
become 08H.

• ADD M (Add Memory to Accumulator) // SUB M (Subtract Memory from Accumulator)

- Description: This instruction adds the content of the memory location pointed to by the HL
register pair to the Accumulator. The result is stored in the Accumulator.

- Syntax: ADD M

- Example: If A = 05H, and HL points to memory location 2000H which contains 03H, after
executing ADD M, A will become 08H.

• INR R (Increment Register) // DCR R (Decrement Register)

- Description: This instruction increments the content of the specified register by 1.

- Syntax: INR R

- Example: If B = 03H, after executing INR B, B will become 04H.

• INR M (Increment Memory) // DCR M (Decrement Memory)

- Description: This instruction increments the content of the memory location pointed to by
the HL register pair by 1.

- Syntax: INR M

- Example: If the memory location 2000H contains 03H and HL points to 2000H, after
executing INR M, the memory content at 2000H will become 04H.

• INX Rp (Increment Register Pair) // DCX Rp (Decrement Register Pair)

- Description: This instruction increments the content of the specified register pair (BC, DE,
HL, or SP) by 1.

- Syntax: INX Rp

- Example: If HL = 2000H, after executing INX H, HL will become 2001H.

Other Operations

Logic Operations
• ANA R

Example: If A = 0AH and B = 03H, after executing ANA B, A will become 02H

• ANI 8bit

Example: If A = 0AH and the immediate value is 03H, after executing ANI 03H, A will

become 02H

• ANA M
Example: If A = 0AH and the memory location pointed to by HL contains 03H, after
executing ANA M, A will become 02H.

• ORA, ORI, XRA, XRI

• CMP R (Compare Register with Accumulator) // CPI 8-bit
(Compare Immediate with Accumulator)

- Description: This instruction compares the content of the
specified register with the Accumulator. The result is not stored,
but the flags are set based on the comparison.

- Syntax: CMP R
- Example: If A = 05H and B = 03H, after executing CMP B, the

Zero (Z) flag will be reset, indicating that A is greater than B.

(A – B) == 02H ZF CF SF
A > B 0 0 0
A = B 1 0 0
A < B 0 1 1

Branch Operations

• JMP 16-bit (Jump to Address) Syntax: JMP address like : goto keyword in c++

• CALL 16-bit (Call Subroutine) Syntax: CALL address like : int sum(int a, int b) return a + b; in c++

• JZ 16-bit (Jump if Zero) Syntax: JZ address if(a == 0)

• JNZ 16-bit (Jump if Not Zero) Syntax: JNZ address if(a != 0)

• JC 16-bit (Jump if Carry) Syntax: JC address if(carry == 0)

• JNC 16-bit (Jump if No Carry) Syntax: JNC address if(carry != 0)

• RET (Return from Subroutine) Syntax: RET

Machine Control Operations

• HLT (Halt) Syntax: HLT (Executing HLT will stop the microprocessor.) like : exit

• NOP (No Operation) Syntax: NOP

• POP (Pop Data Off Stack) Syntax: POP Rp

• PUSH (Push Data Onto Stack) Syntax: PUSH Rp

INTERRUPTED = (DI, EI…….) disable

Instruction Address

I1 MVI A, 24H 1000

I2 MVI B , 56H 1001

I3 ADD B 1002

PC

IR

ID

AB

DB

How Program Works

Simple Assembly Program

Addition of Two 8-bit Numbers

if perform any (Add, Subtract, Multiply etc.) Operation one operand or
value must be store accumulated register . And others value store
temporary register.

MVI A, 0x12 ; Load 0x12 into Accumulator

MVI B, 0x34 ; Load 0x34 into register B

ADD B ; Add the content of B to Accumulator (A = A + B)

OUT 01H ; Display Result on port 01H

HLT ; Halt the program

Q1: If I want to take input from user?
In 8085 assembly programming, the microprocessor does not have built-in
support for direct input from a user (like Scanf() function in C langauge).
Instead, user input is typically handled via I/O ports that connect to input
devices.

1. Input via IN Instruction
2. Example:

MVI A, 00H ; Load the port address into the Accumulator
IN 00H ; Read data from port 00H into the Accumulator
MOV B, A ; Move the input data from Accumulator to register B
HLT ; Halt the program

3. Input/Output Devices Setup

 Connect input device to a particular I/O port on the 8085 microprocessor.
 Ensure that the device is mapped to a specific I/O port address (00H, 01H

etc.)

Q2: If I want to Add Two 16 bit Number ?

Steps to Add Two 16-bit Numbers:

 Split the 16-bit numbers into two 8-bit parts
 Add the lower bytes of both numbers and store the result
 Add the higher bytes of both numbers and store the result
 Store the result.

Example :

The first 16-bit number is stored in two consecutive memory locations
 Lower byte at memory location 2000H
 Higher byte at memory location 2001H

The Second 16-bit number is stored in two consecutive memory locations
 Lower byte at memory location 2002H
 Higher byte at memory location 2003H

The result of the addition will be stored in two consecutive memory
locations

 Lower byte at memory location 2002H
 Higher byte at memory location 2003H

Code to Add two 16 Bit number

//Load the First Number:
LXI H, 2000H
MOV A, M
INX H
MOV B, M

//Load and Add the Second Number:
LXI H, 2002H
ADD M
MOV L, A
INX H
ADC M
MOV H, A

//Store the Result:
LXI D, 2004H
MOV M, L
INX D
MOV M, H

HLT

Multiplication & Division

Flowchart to multiply two
number Start

LDA 2000 // Load multiplicant to accumulator
MOV B,A // Move multiplicant from A(acc) to B register

LDA 2001 // Load multiplier to accumulator
MOV C,A // Move multiplier from A to C

MOV C,A // Move multiplier from A to C
MVI A,00 // Load immediate value 00 to ACC

ADD B // Add B(multiplier) with A
DCR C // Decrement C, it act as a counter

JNZ L // Jump to L if C!=0

STA 2010 // Store result in to memory
HLT // End

Code to multiply two number
LDA 2000 // Load multiplicant to accumulator

MOV B,A // Move multiplicant from A(acc) to B register

LDA 2001 // Load multiplier to accumulator

MOV C,A // Move multiplier from A to C

MVI A,00 // Load immediate value 00 to a

L: ADD B // Add B(multiplier) with A

DCR C // Decrement C, it act as a counter

JNZ L // Jump to L if C reaches 0

STA 2010 // Store result in to memory

HLT // End

Code to get division of two
number

LDA 3000 ; Load the dividend from memory location 3000 to accumulator (A)
MOV B, A ; Move the dividend to register B
LDA 3001 ; Load the divisor from memory location 3001 to accumulator (A)
MOV C, A ; Move the divisor to register C
MVI A, 00 ; Clear accumulator (A) for the quotient (A = 0)

L: CMP B ; Compare the dividend (B) with the divisor (C)
JC END ; If B < C (dividend < divisor), jump to END (division done)
SUB C ; Subtract the divisor from the dividend (B)
INR A ; Increment the accumulator (A), which holds the quotient
JMP L ; Jump back to the label L and continue subtracting

END: STA 3010 ; Store the quotient in memory location 3010
MOV A, B ; Move the remainder (B) to accumulator
STA 3011 ; Store the remainder in memory location 3011
HLT ; Halt the program

Factorial of a Program
LXI SP, 27FFH ; Initialize stack pointer

LDA 2200H ; Get the number

CPI 02H ; Check if number is greater than 1

JC LAST

MVI D, 00H ; Load number as a result

MOV E, A

DCR A

MOV C,A ; Load counter one less than number

CALL FACTO ; Call subroutine FACTO

XCHG ; Get the result in HL // HL with DE

SHLD 2201H ; Store result in the memory // store HL at 0(16bit)

JMP END

LAST: LXI H, 000lH ; Store result = 01

END: SHLD 2201H

HLT

Sub Routine for FACTORIAL

FACTO: LXI H, 0000H

MOV B, C ; Load counter

BACK: DAD D // double add ; HL=HL+DE

DCR B

JNZ BACK ; Multiply by successive addition

XCHG ; Store result in DE // HL with DE

DCR C ; Decrement counter

CNZ FACTO ; Call subroutine FACTO

RET ; Return to main program

8085 Simulator & Kit
• 8085 Simulator is available

• Course website

• 8085 Kit is available in HW Lab (CS422)

• First test the program on Simulator and then go for the HW

• Sometime Kit have Driver, IDE and Assembler

8085 Architecture &
Its Assembly language programming

Presented By

• Shariful Islam(20CSE008)

• Sumia Jahan Jyoti (20CSE011)

• Subrina Jahan Meem(20CSE012)

• Johra Mehjabin(20CSE0130

• Soheb Hosen(20CSE019)

• Ashik Ghosh(20CSE032)

• Shawmitra Das Dwip(20CSE033)

• Md. Sarif(20CSE042)

• Md. Naimul Islam(20CSE045)

• Swastika Das(20CSE050)

• Sayema Siddika(20CSE51)

• Sinkia Akter(19CSE026)

Presented To

Dr. Tania Islam
Assistant Professor
Department of CSE
University of Barisal

Outline

• 8085

– Block diagram (Data Path)

– Instruction Set of 8085

• Sample program of 8085

• Counter & Time Delay

• Stack and Sub Routine

• Assignment on 8085

• Introduction to 8086 and 30x86 architecture

• 8085 and 8086 Comparison

W Z

B C

D E

H L

SP

PC
Inc/Dec. ter

Add latch

MUX

Bus 8 Bit

Interrupt Control Serial I/O Control

IR

I Decode
&

M/C
Encoding

tmp RACC

Timing and Control

ALU

Add Buff Data/Add Buff

Flag

INTR INTA RST5.5
ReSeT6.5

RST7.5 TRAP SID SOD

8085 Microprocessor Architecture

8085
MPU

A15

A0

D0

D7

Address Bus (16bit)

Memory I/P

Data Bus (8bit)

O/P

Control Bus (8bit)

The flow of an Instruction Cycle in 8085

Architecture :

• Program Counter starts program execution with the next address field .It fetches an

instruction from the memory location pointed by Program Counter.

• For address fetching from the memory, multiplexed address/data bus acts as an

address bus and after fetching instruction this address bus will now acts as a data

bus and extract data from the specified memory location and send this data on an 8-

bit internal bus. For multiplexed address/data bus Address Latch Enable(ALE) Pin

is used. If ALE = 1 (Multiplexed bus is Address Bus otherwise it acts as Data

Bus).

• After data fetching data will go into the Instruction Register it will store data

fetched from memory and now data is ready for decoding so for this Instruction

decoder register is used.

• After that timing and control signal circuit comes into the picture. It sends control signals all

over the microprocessor to tell the microprocessor whether the given instruction is for

READ/WRITE and whether it is for MEMORY/I-O Device activity.

• Hence according to timing and control signal pins, logical and arithmetic operations are

performed and according to that data fetching from the different registers is done by a

microprocessor, and mathematical operation is carried out by ALU. And according to

operations Flag register changes dynamically.

• With the help of Serial I/O data pin(SID or SOD Pins) we can send or receive input/output to

external devices .in this way execution cycle is carried out.

• While execution is going on if there is any interrupt detected then it will stop execution of

the current process and Invoke Interrupt Service Routine (ISR) Function. Which will stop

the current execution and do execution of the current occurred interrupt after that normal

execution will be performed.

The flow of an Instruction Cycle in 8085

Architecture :

Simple Assembly Program

MVI A, 24H // load Reg ACC with 24H

MVI B , 56H // load Reg B with 56H

ADD B // ACC= ACC+B

OUT 01H // Display ACC contents on port 01H

HALT // End the program

Result: 7A (All are in Hex)

DAA operation for Decimal Adjust A+6=10H

Flowchart to multiply two number

Start

LDA 2000 // Load multiplicant to accumulator
MOV B,A // Move multiplicant from A(acc) to B register

LDA 2001 // Load multiplier to accumulator
MOV C,A // Move multiplier from A to C

MOV C,A // Move multiplier from A to C
MVI A,00 // Load immediate value 00 to ACC

ADD B // Add B(multiplier) with A
DCR C // Decrement C, it act as a counter

JNZ L // Jump to L if C!=0

STA 2010 // Store result in to memory
HLT // End

Code to multiply two number

LDA 2000 // Load multiplicant to accumulator

MOV B,A // Move multiplicant from A(acc) to B register

LDA 2001 // Load multiplier to accumulator

MOV C,A // Move multiplier from A to C

MVI A,00 // Load immediate value 00 to a

L: ADD B // Add B(multiplier) with A

DCR C // Decrement C, it act as a counter

JNZ L // Jump to L if C reaches 0

STA 2010 // Store result in to memory

HLT // End

Delay of Instructions

• Performance/delay of each instruction

MVI C, FFH 7 T-State

LOOP: DCR C 4 T-State

JNZ LOOP 7/10 T-State

• Performance of other INS

ADD R 4 T-State

ADD M 7 T-State

CALL addr 18 T-State

• F=Fetch with 4 State, S=Fetch with 6 State,
R=Memory Read, W=Memory Write

F R

F

F R R

F

F R

S R R W W

Time Delay Loop

• Performance/delay of each instruction

MVI C, FFH 7 T-State

LOOP: DCR C 4 T-State

JNZ LOOP 7/10 T-State

• Time delay in loop

TL= T x Loop T-States x N10

where T=System clock period

N10= Equiv. decimal value of count loaded to C

TL= 0.5x10-6 x (14 x 255)=1.8ms (ignore 10 T-State)

F R

F

F R R

Time Delay: Nested Loop

• Performance/delay of each instruction

MVI C, FFH 7 T-State

MVI D, FFH 7 T-State

LOOP1: DCR C 4 T-State

LOOP2: DCR D 4 T-State

JNZ LOOP2 7/10 T-State

JNZ LOOP1 7/10 T-State

• Time delay in Nested loop

TNL= N110 x T x (L1_TStates+ L2_TStates x N210)

F R
F

F R R

F R

F R R

F

Traffic Light Control: Counter & Delay

LOOP: MVI A 01H
OUT 01H
LD B DELAY_RED
CALL DELAY

Load DelayRed

Time Delay

Turn Signal to Red

Load DelayYellow

Time Delay

Turn Signal to Yellow

Load DelayGreen

Time Delay

Turn Signal to Green

MVI A 02H
OUT 01H
LD B DELAY_YELLOW
CALL DELAY

MVI A 03H
OUT 01H
LD B DELAY_GREEN
CALL DELAY

JMP LOOP

Stack Pointer (SP) & Stack Memory

• The stack is an area of memory identified by the programmer
for temporary storage of information.

• The stack is a LIFO structure.

• The stack normally grows backwards into memory.

– Programmer can defines the

bottom of the stack (SP)

and the stack grows up into
reducing address range.

Memory

Bottom
of the
Stack

The Stack
grows
backwards
into memory

Stack Memory

• Grows backwards into memory

• Better to place the bottom of the stack at the end of memory

• To keep it as far away from user programs as possible.

• Stack is defined by setting the SP (Stack Pointer) register.

LXI SP, FFFFH

• This sets SP to location FFFFH (end of memory for 8085).

Saving Information on the Stack

• Save information by PUSHing onto STACK

• Retrieved from STACK by POPing it off.

• PUSH and POP work with register pairs only.

• Example “PUSH B”
– Decrement SP, Copy B to 0(SP)

– Decrement SP, Copy C tp 0(SP)

• Example “POP B”
– Copy 0(SP) to C, Increment SP

– Copy 0(SP) to B, Increment SP

B C

SPFFFF

FFFE

FFFD

FFFC

FFFB

F312

F3
12

Stack/LIFO use in CALL/RET

• Retrieve information back into its original location

– The order of PUSHs and POPs must be opposite

• 8085 recognizes one additional register pair

– PSW (Prog Status word) = ACC and Flag

Before any routine CALL do this
PUSH B

PUSH D
PUSH PSW

After RETURN from call do this
POP PSW

POP D
POP BB

D

PSW

PSW
• Program Status Word stores the processor’s current condition

(PSW).

• It combines accumulator A and flag register F.

• 8 bits register

Subroutines

• A subroutine is a group of instructions

– That is used repeatedly in different places of the program.

– Rather than repeat the same instructions several times

– It can be grouped into a subroutine and call from the different
locations.

• Instructions for dealing with subroutines.

– The CALL instruction is used to redirect program execution to
the subroutine.

– The RET instruction is used to return the execution to the
calling routine.

22

CALL/RET Instruction

• You must set the SP correctly before using CALL

• CALL 5000H

– Push the PC value onto the stack

– Load PC with 16-bit address supplied CALL ins.

• RET : Load PC with stack top; POP PC
PC

SPFFFF

FFFE

FFFD

FFFC

FFFB

2 0 0 3

03
20

2000 CALL 5000
2003

24

Call by References

• Use PUSH to save register states before entering the subroutine.

• Use POP to restore register states after the subroutine completes

• Subroutines often manipulate data stored in registers.
• Changes made in the subroutine affect the calling program when returned.

Managing Changes:

• PUSH commands save necessary registers before subroutine execution.
• POP commands restore registers after returning from the subroutine.

Example sequence:

Before Subroutine Call:
 PUSH B // Base Register
 PUSH D // Data Register
 PUSH PSW //Program Standard Word

After Subroutine Call:
 POP PSW
 POP D
 POP B

Stack and LIFO in Subroutine Calls

Assembly Language

Factorial of a number

LXI SP, 27FFH // Initialize stack pointer

LDA 2200H // Get the number

CPI 02H // Check if number is greater than 1

JC LAST

MVI D, 00H // Load number as a result

MOV E, A

DCR A

MOV C,A // Load counter one less than number

CALL FACTO // Call subroutine FACTO

XCHG // Get the result in HL // HL with DE

SHLD 2201H // Store result // store HL at 0(16bit)

JMP END

LAST: LXI H, 000lH // Store result = 01

END: SHLD 2201H

HLT

Factorial Number using recursion

Sub Routine for FACTORIAL

FACTO:LXI H, 0000H

MOV B, C // Load counter

BACK: DAD D // double add ; HL=HL+DE

DCR B

JNZ BACK //Multiply by successive addition

XCHG // Store result in DE // HL with DE

DCR C // Decrement counter

CNZ FACTO // Call subroutine FACTO

RET // Return to main program

Assignment I

• Write and execute 8085 assembly language program to find
value of Nth Fibonacci number (Recursive version: using
recursive subroutine call)

• 16 bit can support up to 65356 > F24

• Deadline: 12th Aug 2010, 11.55Mid night

• After deadline grading: Max 5 out of 10

• Send TXT version of program with file name RollNo.txt to
asahu@iitg.ernet.in with Assignment one as subject of email

• Don’t submit copied one: will get Negative marks

mailto:asahu@iitg.ernet.in

Introduction to
8086 & i386 processor

• 16 bit Microprocessor

• All internal registers as well as internal and external
data buses were 16 bits wide

• 4 Main Register, 4 Index Register, 4 Segment Register,
Status Reg, Instr Ptr.

• Not compatible with 8085, but with successors

• Two Unit works in parallel:

– Bus Interface Unit (BIU)

– Execution Unit (EI)

8086 Architecture

Internal Architecture of 8086

• The 8086 microprocessor is internally divided into two separate functional
units.

• These are the Bus Interface Unit (BIU) and the Execution Unit (EU). The
BIU fetches instructions, reads data from memory and ports, and writes
data to memory and I/O ports. The EU executes instructions that have
already been fetched by the BIU. The BIU and EU function independently.

• The BIU’s instruction queue is a First-In First-out (FIFO) group of registers
in which up to six bytes of instruction code are perfected from memory
ahead of time.

• The BIU contains a dedicated adder, which is used to produce the 20-bit
address.

• The bus control logic of the BIU generates all the bus control signals such
as read and write signals for memory and I/O.

8086 Registers

General Purpose Register

• AX - the accumulator register (divided into AH / AL):

– Generates shortest machine code

– Arithmetic, logic and data transfer

– One number must be in AL or AX

– Multiplication & Division

– Input & Output

• BX - the base address register (divided into BH / BL).

• CX - the count register (divided into CH / CL):

– Iterative code segments using the LOOP instruction

– Repetitive operations on strings with the REP command

– Count (in CL) of bits to shift and rotate

• DX - the data register (divided into DH / DL):

– DX:AX concatenated into 32-bit register for some MUL and DIV operations

– Specifying ports in some IN and OUT operations

Segment Registers

• CS - points at the segment containing the current program.

• DS - generally points at segment where variables are defined.

• ES - extra segment register, it's up to a coder to define its usage.

• SS - points at the segment containing the stack.

• IP - the instruction pointer:

- Always points to next instruction to be executed

Pointer and Index Registers

• SI - source index register:

– Can be used for pointer addressing of data

– Used as source in some string processing instructions

• DI - destination index register:

– Can be used for pointer addressing of data

– Used as destination in some string processing instructions

• BP - base pointer:

– Primarily used to access parameters passed via the stack

• SP - stack pointer:

– Always points to top item on the stack

– An empty stack will had SP = FFFEh

Flag Register

8085 VS 8086

Thanks

Welcome To Our Presentation

8085 Architecture &

Its Assembly language programming

Presented By

• Tahera Annur (20CSE014)

• Zm Abul Kasem Nayon (20CSE015)

• Md. Mehedi Hasan (20CSE016)

• Md. Ashik Ud Zaman (20CSE022)

• Md. Rahatul Islam Rifat (20CSE023)

• Md. Mostafizur Rahman (20CSE035)

• Tethi Rani Debnath (20CSE036)

• Md Zakir Hossen (20CSE037)

• Md. Meherab Hossain (20CSE038)

• Protyush Bowali (19CSE017)

Presented To

Dr. Tania Islam

Assistant Professor

Department of CSE

University of Barisal

• Review of 8086 Architecture

– Block diagram (Data Path)

• Similarity with x86 (i386, Pentium,)

– Very IMP for interview/knowledge

– Not part of Examination

• x86 Assembly language program

– Memory model

– Example programs

– Data Segment

– Loop and Nested Loop

• Next Class: Detail of assembly language

– Summary of 8085/8086/i386 Arch & programming

Outline

Introduction to

8086 & i386 processor

• 16 bit Microprocessor

• All internal registers as well as internal and external data buses were 16 bits wide

• 4 Main Register, 4 Index Register, 4 Segment Register, Status Reg, Instr Ptr.

• Not compatible with 8085, but with successors

• Two Unit works in parallel:

– Bus Interface Unit (BIU)

– Execution Unit (EI)

8086 Architecture

8086 Architecture

• Execution Unit :

– ALU may be loaded from three temp registers (TMPA, TMPB, TMPC)

– Execute operations on bytes or 16-bit words.

– The result stored into temp reg or registers connected to the internal data bus.

• Bus Interface Unit

– BIU is intended to compute the addresses.

– Two temporary registers

– indirect addressing

– four segment registers (DS, CS, SS and ES),

– Program counter (IP - Instruction Pointer),

– A 6-byte Queue Buffer to store the pre-fetched opcodes and data.

– This Prefetch Queue optimize the bus usage.

– To execute a jump instruction the queue has to be flushed since the pre-fetched instructions do not have to be

executed.

History of Intel Architectures

• 1978: 8086 (16 bit architecture)

• 1980: 8087

• Floating point coprocessor is added

• 1982: 80286

• Increases address space to 24 bits

• 1985: 80386:

• 32 bits Add,

• Virtual Mem & new add modes

• Protected mode (OS support)

• 1989-95: 80486/Pentium/Pro

• Added a few instructions of base MMX

History of Intel Architectures

• 1997: Pentium II

• 57 new “MMX” instructions are added,

• 1999: Pentium III:

• Out of Order, added another 70 Streaming SIMD Ext (SSE)

• 2001: Pentium 4

• Net burst, another 144 instructions (SSE2)

• 2003: PI4 HT, Trace Cache

• 2005: Centrino, low power

• 2007: Core architecture, Duo

• 2008: Atom, Quad core with HT….

• 2009---:Multi core (Large chip multiprocessor)

Superscalar Pipeline

ILP in Superscalar processors

Intel P5 Architecture (Generation 5)

Intel P6 Architecture (Generation 6)

Intel NetBurst MicroArchitecture

• Used in the Pentium II, III and Pro processors.

• 3 instruction decoders, which break each instruction into equivalent micro-operations for the

Execution unit .

• 10 stage instruction pipeline utilized in this architecture.

Intel NetBurst MicroArchitecture

Task of SuperScalar Processing

Dependent/Independent Instruction

• ADD T A B T= A+B

• ADD W C D W= C+D

• LD A, 0(W) A=M[W]

• ST C, 0(B) M[B]=C

Read After Write (RAW), W after W, W after R

RAW (Ins2-Ins3): True dependency

WAW, WAR (Ins1 ot Ins3) : false dependency

Issue vs Dispatch

Blocking Issue

• Decode and issue to EU

Instructions may be blocked due to

data dependency

Non-blocking Issue

• Decode and issue to buffer

• From buffer dispatch to EU

Instructions are not blocked due to data

dependency

Blocking Issue

Non-blocking (shelved) Issue

Handling of Issue Blockages

Dependent/Independent Instructions

Issue Order

Alignment

Design choices in instruction issue

Layout of Shelving Buffers

Reservation Stations (RS)

Issue bound operand fetch

(with single register file)

Dispatch bound operand fetch (with single

register file)

Why Renaming and Reordering?

• Register Renaming

– Removes false dependencies (WAR and WAW)

• Reordering Buffer (ROB) : Pentitum Out of order instruction processing

– Ensures sequential consistency of interrupts (precise vs imprecise interrupts)

– Facilitates speculative execution

• Branch execution

• Execute both path and discard after getting CC Value

Register renaming

Who does renaming?

• Compiler

– Done statically

– Limited by registers visible to compiler

• Hardware

– Done dynamically

– Limited by registers available to hardware

X86 Assembly Language Program

An assembly language is a type of programming language that

translates high-level languages into machine language.

X86 architecture is based on Intel's 8086 microprocessor.

8086 Registers

AX - the accumulator register (divided into AH / AL)

BX - the base address register (divided into BH / BL)

CX - the count register (divided into CH / CL)

DX - the data register (divided into DH / DL)

SI - source index register.

DI - destination index register.

BP - base pointer.

SP - stack pointer.

i386/i486/i686 Registers

Memory layout of C program

Memory layout of C program

MASM : Hello world

model small

.stack 100h ; reserve 256 bytes of stack space

.data

message db "Hello world, I'm learning Assembly$”

.code

main proc

mov ax, seg message

mov ds, ax

mov ah, 09 // 9 in the AH reg indicates Procedure

//should write a bit-string to the screen.

lea dx, message // Load Eff Address

int 21h

mov ax,4c00h // Halt for DOS routine (Exit Program)

int 21h

main endp

end main

Memory Model: Segment Definition

• .model small

– Most widely used memory model.

– The code must fit in 64k.

– The data must fit in 64k.

• .model medium

– The code can exceed 64k.

– The data must fit in 64k.

• .model compact

– The code must fit in 64k.

– The data can exceed 64k.

• .medium and .compact are opposites.

Data Allocation Directives

• db : define byte dw: def. word (2 bytes)

• dd: def double word (4) dq : def quad word (8)

• equ : equate assign numeric expr to a name

.data

db A 100 dup (?) ; define 100 bytes, with no initial values for

bytes

db “Hello” ; define 5 bytes, ASCII equivalent of “Hello”.

dd PtrArray 4 dup (?) ;array[0..3] of dword

maxint equ 32767 ; define maxint=32767

count equ 10 * 20 ; calculate a value (200)

MASM: Loop

• Assembly code: Loop

– Loop simply decreases CX and

checks if CX != 0, if so, a Jump to

the specified memory location

– LOOPNZ : LOOPs when the zero

flag is not set

MOV CX,100

_LABEL: INC AX

LOOP _LABEL

MOV CX,10

_CMPLOOP:DEC AX

CMP AX,3

LOOPNE CMPLOOP

MASM: Nested Loop

• Assembly code: Nested Loop: One CX register

mov cx, 8

Loop1: push cx

mov cx, 4

Loop2: stmts

loop Loop2

pop cx

stmts

loop Loop1

Thank you…

