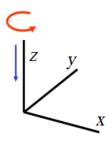
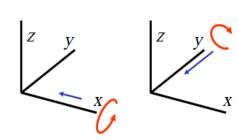
Homogeneous Transformation Matrices in Robotics

Rotation in 3D





Rotate over angle θ around x-as:

$$x' = x$$
 $x' = x$
 $y' = y \cos \theta - z \sin \theta$ $y' = y$
 $z' = y \sin \theta + z \cos \theta$ $z' = z \cos \theta$

Rotate over angle θ around y-as:

$$x' = x \cos \theta + z \sin \theta$$

$$y' = y$$

$$z' = z \cos \theta - x \sin \theta$$

Rotate over angle θ around z-as:

$$x' = x \cos \theta - y \sin \theta$$

$$y' = x \sin \theta + y \cos \theta$$

$$z' = z$$

$$R_x(heta) = egin{bmatrix} 1 & 0 & 0 \ 0 & \cos heta & -\sin heta \ 0 & \sin heta & \cos heta \end{bmatrix}$$

$$R_x(heta) = egin{bmatrix} 1 & 0 & 0 \ 0 & \cos heta & -\sin heta \ 0 & \sin heta & \cos heta \end{pmatrix} \quad R_y(heta) = egin{bmatrix} \cos heta & 0 & \sin heta \ 0 & 1 & 0 \ -\sin heta & 0 & \cos heta \end{bmatrix} \quad R_z(heta) = egin{bmatrix} \cos heta & -\sin heta & 0 \ \sin heta & \cos heta & 0 \ 0 & 0 & 1 \end{bmatrix}$$

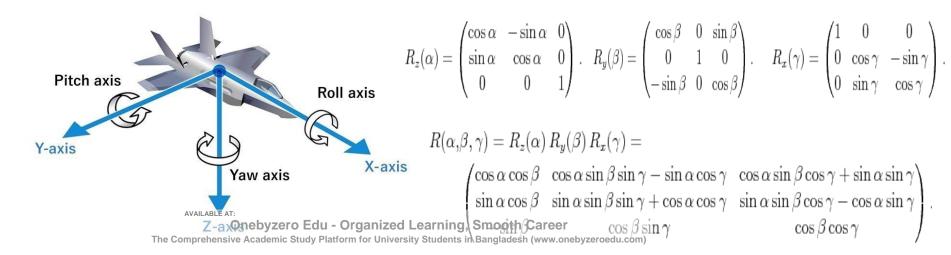
$$R_z(heta) = egin{bmatrix} \cos heta & -\sin heta & 0 \ \sin heta & \cos heta & 0 \ 0 & 0 & 1 \end{bmatrix}$$

AVAII ARI F AT-

Composite Rotations: Yaw-Pitch-Roll

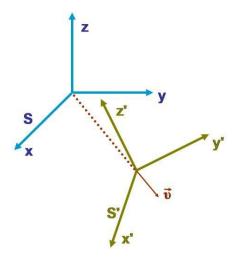
Imagine three lines running through an airplane and intersecting at right angles at the airplane's center of gravity.

- Rotation around the front-to-back axis is called roll.
- Rotation around the side-to-side axis is called pitch.
- Rotation around the vertical axis is called yaw.



Homogeneous Coordinates (Observation)

- We need **pure rotations and translations** to characterize the **position and orientation** of a point relative to the coordinate frame attached to the base.
- While a rotation can be represented by a **3x3** matrix, it is not possible to represent translation by the same dimension.
- So, we need to move to a higher dimensional space, likehere we need **four** dimensional space of homogeneous coordinates.



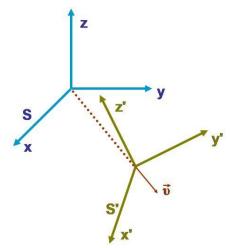
Homogeneous Coordinates (Definition)

Let q be a point in R^3 , and let F be an orthonormal coordinate frame of R^3 . If σ is any non zero scale factor, then the homogeneous coordinates of q with respect to F are denoted as [q]F and defined:

$$[q] \cdot F = [\sigma \cdot q1, \sigma \cdot q2, \sigma \cdot q3, \sigma]$$

In robotics we use $\sigma = 1$ for convenience So,

$$[q]F = [q1, q2, q3, 1]$$



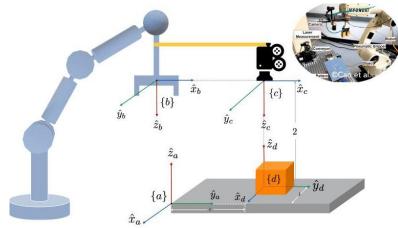
AVAILABLE AT:

Homogeneous Transformation Matrix

If a physical point in **three** dimensional space is expressed in terms of its homogeneous coordinates and we want to change from one coordinate frame to another, we use a **4x4** homogeneous transformation matrix. In general **T** is —

$$T = \begin{bmatrix} R & p \\ \hline \eta^T & \sigma \end{bmatrix}$$

- R is the 3x3 matrix rotation matrix
- P is a 3x1 translation vector
- η is a perspective vector, set to zero
- $\sigma_{\text{Als}_{\text{B}}}$ for robotics



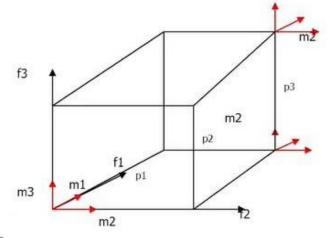
Onebyzero Edu - Organized Learning, Smooth Career

Homogeneous Transformation Matrix

Using homogeneous coordinates, translations also can be represented by **4x4** matrices. In terms of homogeneous coordinate frames, the translation of **M** can be represented by a **4x4** matrix, denoted **Tran(p)**, where —

$$Tran(p) = \begin{bmatrix} 1 & 0 & 0 & p_1 \\ 0 & 1 & 0 & p_2 \\ 0 & 0 & 1 & p_3 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

Tran(p) is known as the fundamental homogeneous translation matrix



AVAILABLE AT:

Inverse Homogeneous Transformation

If **T** be a homogeneous transformation matrix with rotation **R** and translation **P** between two orthonormal coordinate frames and if $\eta = 0$, $\sigma = 1$, then the inverse transformation is:

$$T^{-1} = \begin{bmatrix} R^T & -R^T p \\ 0 & 0 & 0 \end{bmatrix}$$

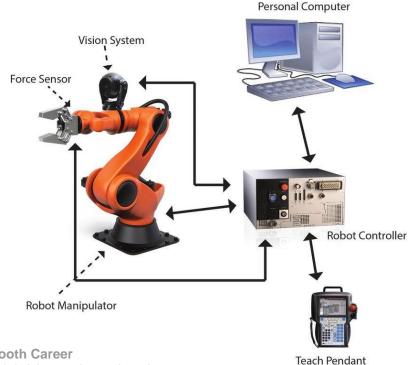
Why Transformation Matrices are important?

- Solve forward and inverse kinematics problems.
- Facilitate coordinate transformations between different components of a robot.
- Enable accurate manipulator control and trajectory planning.
- Support workspace analysis and collision avoidance.
- Integrate sensor data into the robot's coordinate system.
- Assist in robot calibration for improved accuracy.
- Aid in robot simulation and visualization.

Components of an Industrial Robot

The four main parts of an industrial robot are

- Manipulator,
- Controller,
- Human interface device, and
- Power supply.



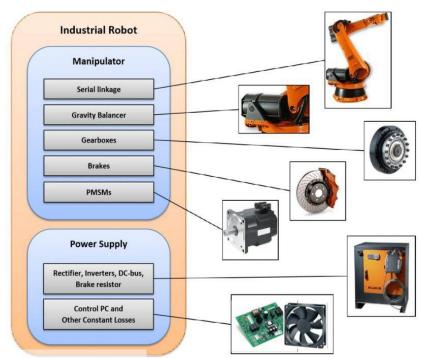
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career

Components of an Industrial Robot

The four main parts of an industrial robot are

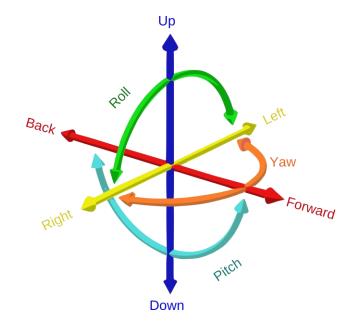
- Manipulator,
- Controller,
- Human interface device, and
- Power supply.



AVAILABLE AT:

Degrees of Freedom (DoF)

- In general, degrees of freedom (DOF) are the set of independent displacements that specify completely the displaced or deformed position of the body or system.
- In robotics, degrees of freedom is often used to describe the number of directions that a robot can move a joint.



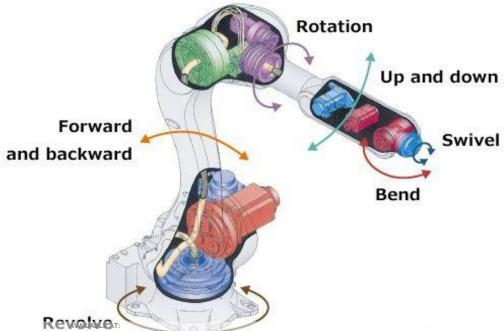
Degrees of Freedom (DoF)

- A human arm is considered to have 7 DOF. A shoulder gives pitch, yaw and roll, an elbow allows for pitch, and a wrist allows necessary to move the hand to any point in space, but people would lack the ability to grasp things from different angles or directions.
- A robot (or object) that has mechanisms to control all 6 physical DOF is said to be holonomic. An object with fewer controllable DOF than total DOF is to be non-holonomic and an object with more controllable DOF than total DOF (such as human arm) is said to be redundant.

Degrees of freedom	Free	Free translations	Name	Kinematic pair	
				Form closure	Force closure
5	3	2	Sphere-plane		
4	3	1	Sphere-groove	8	
	2	2	Cylinder-plane		
3	3	0	Spheric	8	4
	2	1	Sphere-slotted cylinder		
	1	2	Planar	1	28
2	2	0	Slotted spheric	8	(80)
	2	0	Toric	9	
	1	1	Cylindric	0	5
	1	1	Slotted cylinder	1	18
1 er	1	0	Revolute	d)	(35)
	0 zeroedu	1	Prismatic		(B)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career



Onebyzero Edu - Organized Learning, Smooth Career

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career