Intermediate Code Generation
Part |

Chapter 8

(cepyright Robert van Engelen, Florida State University, 2007

http://www.onebyzeroedu.com

Intermediate Code Generation

» Facilitates refargeting: enables attaching a back
end for the new machine to an existing front end

Intermediate Targ.et
—> Front end codo > Back end —>machine
code

* Enables machine-independent code optimization

http://www.onebyzeroedu.com

Intermediate Representations

Graphical representations (€.g2. AST)

Postfix notation: operations on values stored
on operand stack (similar to JVM bytecode)

Three-address code: (e.g. triples and quads)
X:=yopz
Two-address code:

X:=0py
which 1s the same as x :==x op y

http://www.onebyzeroedu.com

Syntax-Directed Translation of
Abstract Syntax Trees

Production Semantic Rule

S —id :=EF | Saptr := mknode(‘:=", mkleaf(id, id.entry), £.nptr)
E— E, +E, | Enptr :=mknode(‘+’, E, nptr, E,.nptr)

E— E, *E, | Enptr :=mknode(‘*’, E, nptr, £, nptr)

E—-FE, Enptr ;= mknode(‘uminus’, E,.nptr)

E—>(E)) Enptr := £, .nptr

E—id E.nptr .= mkleaf(id, id.entry)

http://www.onebyzeroedu.com

Abstract Syntax Trees

E.nftr\\
a*(b+c¢)) E.nrtr * Enrtr\\ \

|
! \
a | (L. nrtr\ } ‘. N
I T~ a. Y
| AR
s 1
Enptr, + Enptr._}_
\ '. F LT
Ly o
\ b || C \'4 I
Vo @ N |
\ \ I
\ \ i
Pro: easy restructuring of code <1
: T - +
and/or expressions for \ 4
\
intermediate code optimization s
Cons: memoty intensive b

http://www.onebyzeroedu.com

Abstract Syntax Trees versus
DAGs

a:=b*¥-c+b*-c

Q@ v

*

uminus

Fee

uminus

uminus

DAG

http://www.onebyzeroedu.com

Postfix Notation

a:=b*¥-c+b*-c

Q@ W

Bytecode (for example)

a b ¢ uminus * b ¢ uminus * + assign

Postfix notation represents
operations on a stack

Pro: easy to generate
Cons: stack operations are more
difficultte.Qptunize

iload 2
iload 3
ineg
imul
iload 2
iload 3
ineg
imul
iadd
istore 1

//
//
//
//
//
//
//
//
//
//

push b

push c

uminus

*

push b

push c

uminus

*

+

store a

http://www.onebyzeroedu.com

tl :
t2 :
t3 :
td
t5 :

a

Three-Address Code

a:=b*¥-c+b*-c

L ¢

- C
b * tl1
- C
b * t3
t2 + t4
t5

Linearized representation
of a syntax tree

-

- C

t2 := b * tl
t5 = t2 + t2
a = t5

Linearized representation
of a syntax DAG

http://www.onebyzeroedu.com

Three-Address Statements

Assignment statements: x :=yopz,x :=o0py
Indexed assignments: x :=y[i], x[i] :=y
Pointer assignments: x := &y, x :=*p, *x 1=y
Copy statements: x :=y

Unconditional jumps: goto lab
Conditional jumps: i £ x relop y goto lab

Function calls: paramx... call p, n
returny

http://www.onebyzeroedu.com

10

Syntax-Directed Translation into
Three-Address Code

Productions Synthesized attributes:
S—>id:=FE S.code three-address code for S
| while £ do S S.begin label to start of S or nil

EFE—>E+FE S.after label to end of S or nil

E*E E.code three-address code for £

-FE E.place a name holding the value of E

(E)

id

num /gen(E.place ‘=’ E,.place ‘+’ E,.place)

4

de generation —
Co g —> t3 = t1 4+ t2

http://www.onebyzeroedu.com

11

Syntax-Directed Translation into
Three-Address Code (cont’d)

Productions | Semantic rules
S—id:=F |S.code:=E.code || gen(id.place *:=’ E.place); S.begin := S.after := nil
S — while £ | (see next slide)
do S,
E — E,+ E, | E.place .= newtemp();
E.code := E,.code || E,.code || gen(E.place “:=" E,.place ‘+’ E,.place)
E— E,* E, | E.place .= newtemp();
E.code := E,.code || E,.code || gen(E.place “:=" E|.place ‘*’ E,.place)
E—-F, E.place := newtemp();
E.code := E,.code || gen(E.place *:=" ‘uminus’ £,.place)
E—(E)) E.place = E,.place
E.code := E,.code
E—id E.place :=id.name
E.code :=°
E — num E.place := newtemp();

E.cOderzee gopnlFnTace e hiiht. alue)

http://www.onebyzeroedu.com

Syntax-Directed Translation into
Three-Address Code (cont’d)

Production S.begin: | E.code
5 — while £ do 5, if E.place = 0 goto S.after
Semantic rule S.code
S.begin := newlabel() goto S.begin
S.after ;= newlabel() S after:
S.code := gen(S.begin ‘) ||
E.code ||
gen(‘if” E.place ‘=* ‘0’ ‘goto’ S.after) ||
S,.code ||

gen(‘goto’ S.begin) ||
gen(S.after :”)

http://www.onebyzeroedu.com

Example

i=2*n+Kk

while i do
i=1-k

tl = 2

t2 := tl1l * n

t3 := t2 + k

i = t3

Ll: if 1 = 0 goto L2

t4d =1 - k

i := t4

goto L1

La2:

13

http://www.onebyzeroedu.com

Implementation of Three-
Address Statements: Quads

Op | Argl | Arg2 | Res

(0) | umin C tl
us

(1) * b tl t2

(2) | umin C t3
us

(3) * t3 t4
Quads-(quadnuples)

(4) + t2 t4 t5

Pro: cq%) to|rearrange ¢gde for global aptinmpization

Consi-ots ot

CLLIPDOI

1ICD

14

http://www.onebyzeroedu.com

Implementation of Three-
Address Statements: Triples

Op | Argl | Arg2
(0) | umin C
us
(1) * b (0)
(2) | umin C
us
3) Tl b (@)
llllJICD
@ |+ 1 @O 06
Pro(S) temporar s gre nln %lﬂlt
\ AT (/Ullb U lllbUIL t 1Cdlldlilgl LUU

http://www.onebyzeroedu.com

Implementation of Three-
Address Stmts: Indirect Triples

Stmt
(0) (14) >
(1) (15) >
(2) (16) >
3) (17) >
4) (18) >
(3) (19) >
Program
Pro: temporaries are impli

Op | Argl | Arg2
(14) | umin C
us
(15) * b (14)
(16) | umin C
us
(17) * b (16)
(18) Iriplec o?ﬁagflezr (17)
Lif & katier To rearrdngd cbfd)

16

http://www.onebyzeroedu.com

17

Names and Scopes

e The three-address code generated by the syntax-
directed definitions shown on the previous slides
1s somewhat simplistic, because 1t assumes that the
names of variables can be easily resolved by the
back end 1n global or local variables

* We need local symbol tables to record global
declarations as well as local declarations 1n
procedures, blocks, and structs to resolve names

http://www.onebyzeroedu.com

18

Symbol Tables for Scoping

Tt’_’uit S We need a symbol table
int a; <«
int b for the fields of struct S
} S <«

Need symbol table

—

void swap (int& a, int& b)< for global variables

{ int t; and functions
t = a;
a =Db;
b =+¢t;

Need symbol table for arguments
and /ocals for each function

void somefunc ()

{ . ~— Check: s 1s global and has fields a and b

swap(s.a, s.b); Using symbol tables we can generate
' code-to access s and its fields

http://www.onebyzeroedu.com

19

Oftset and Width for Runtime

Allocation
struct S
{ int a; < The fields a and b of struct S
int b; are located at offsets 0 and 4
} s from the start of S ~_

void swap(int& a, inté& b) a (0

(int t. The width of Sis 8 = [

t = a;
2 _ i; \ Subroutine frame holds
\ / arguments a and b and Subroutine
local t at offsets 0, 4, and 8 frame
void somefunc () ~ fp[0]= a2 (0)
{ .. fp[4]|= b (4)
swap(s.a, s.b); — fp[8]=t (8

The width of the frame 1s 12

http://www.onebyzeroedu.com

struct S
{ int a;

int b;
} sy

void swap (inté& a,

{ int t;
t = a;
a =b;
b =+¢t;

}

void foo()

{ ..

swap(s.a,

s.b);

Example

int& b

20

globals
prev=nil [8] TrecS ¢
e
swap o prev=nil [8]
foo . a (0 \‘
b (4
Tfun swapy
Tref ¢
prev [12] .
3 0) & Tint
b 4/
t ®7 | Table nodes
Tfun foo ¢ _| type nodes
\ (offset)
Nprer, [0] [width]

http://www.onebyzeroedu.com

21

Hierarchical Symbol Table
Operations

mktable(previous) returns a pointer to a new table
that 1s linked to a previous table in the outer scope

enter(table, name, type, offset) creates a new entry
in table

addwidth(table, width) accumulates the total width
of all entries 1n table

enterproc(table, name, newtable) creates a new
entry 1n table for procedure with local scope
newtable

lookup(table, name) returns a pointer to the entry
in the table for name by following linked tables

http://www.onebyzeroedu.com

22

Syntax-Directed Translation of
Declarations 1n Scope

Productions
P—>D;S§

D —

T —

S—

DD

id: T
procid; D ; §
integer

real

array [num | of 7
NT

record D end
S S

id:=F

callid (4)....

A -

E*E
-E
(E)
id
E/\
& E
E.id
A,E
E

Productions (cont’d)
E—>E+E

Synthesized attributes:

T.type pointer to type

T'.width storage width of type (bytes)
E.place name of temp holding value of £

Global data to implement scoping:
tblptr stack of pointers to tables
offset stack of offset values

http://www.onebyzeroedu.com

23

Syntax-Directed Translation of
Declarations 1 Scope (cont’d)

P — {t.=mktable(nil); push(t, tblptr); push(0, offset) }
D;S
D—id: T
{ enter(top(tblptr), id.name, T.type, top(offset));
top(offset) := top(offset) + T.width }
D — procid ;
{ t .= mktable(top(tblptr)); push(t, tbiptr); push(0, offset) }
D, ;S
{ t :=top(tblptr), addwidth(t, top(offset));
pop(tbiptr); pop(offset);
enterproc(top(tblptr), id.name, 1) }
D — Db,

http://www.onebyzeroedu.com

24

Syntax-Directed Translation of
Declarations 1 Scope (cont’d)

I'— integer { T.type := ‘integer’; T.width =4 }
T — real { T.type := ‘real’; T.width .= 8 }
T'— array [num | of 7}
{ T.type := array(num.val, T,.type);
T.width ;= num.val * T,.width }

I'—>"T,
{ T.type := pointer(T,.type); T.width :=4 }
T — record
{ t := mktable(nil); push(t, tbiptr); push(0, offset) }
D end

{ T.type := record(top(tblptr)); T.width := top(offset);
addwidth(top(thintr), toplafiser)); pop(tblptr); pop(offset) }

http://www.onebyzeroedu.com

s: record

a: integer;
b: integer;

end;

proc

oM ot O

proc

call swap(&s.a,

swap;
“integer;
“integer;
integer;

= a”®;

b*;
t;

foo;

Example

&s.b) ;

25

globals
prev=nil [8] Trec .
: 0t
swap o prev=nil [8]
foo . a (0 \‘
b (4
Tfun swapy
Tptr ?
prev [12] .
3 0) & Tint
b 4/
t ®7 | Table nodes
Tfun foo ¢ _| type nodes
A\ (offset)
Nprer. 0] [width)

http://www.onebyzeroedu.com

26

Syntax-Directed Translation of
Statements 1n Scope

S—>85;38

. Globals

S—id:=F R
{ p := lookup(top(tblptr), id.name);

if p = nil then * ©

error() y {3
else if p.level = 0 then // global variable |

emit(id.place ;=" E.place) Subroutine

else // local variable in subroutine frame S frari)e)
emit(fp[p.oftset] ;=" E.place) } cl4e @

fp[8]= t (8

http://www.onebyzeroedu.com

Syntax-Directed Translation of
Expressions 1n Scope

E—>E, +E,
E—>E, *E,
E%-El

E—(E))
E —id

{ E.place := newtemp();
emit(E.place *:=’ E,.place ‘+’ E,.place) }
{ E.place := newtemp();
emit(E.place *:=’ E,.place ‘*’ E,.place) }
{ E.place := newtemp();
emit(E.place *:=" ‘uminus’ E,.place) }
{ E.place := E,.place }
{ p .= lookup(top(tblptr), id.name);
if p = nil then error()
else if p.level = 0 then // global variable
E.place :=id.place
else // local variable in frame
feplace= fpipcotiset] }

i J

27

http://www.onebyzeroedu.com

28

Syntax-Directed Translation of

Expressions in Scope (cont’d)

E—>E " { E.place := newtemp();
emit(E.place “:=" **’ E, place) }
EFE—->&E, { E.place := newtemp();
emit(E.place “:=" ‘&’ E,.place) }
E—id, .id, {p :=lookup(top(tblptr),id,.name);
if p = nil or p.type != Trec then error()
else
= lookup(p.type.table, id,.name);
if g = nil then error()
else if p.level = 0 then // global variable
E.place :=id,.place[q.offset]
else // local variable in frame
kplacesdpp.offset+q.offset] }

http://www.onebyzeroedu.com

