
1

Intermediate Code Generation

Part I

Chapter 8

Copyright Robert van Engelen, Florida State University, 2007
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

2

Intermediate Code Generation

• Facilitates retargeting: enables attaching a back

end for the new machine to an existing front end

• Enables machine-independent code optimization

Front end Back end
Intermediate

code

Target

machine

code

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

3

Intermediate Representations

• Graphical representations (e.g. AST)

• Postfix notation: operations on values stored
on operand stack (similar to JVM bytecode)

• Three-address code: (e.g. triples and quads)
 x := y op z

• Two-address code:
 x := op y
which is the same as x := x op y

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

4

Syntax-Directed Translation of

Abstract Syntax Trees

Production

S  id := E

E  E1 + E2

E  E1 * E2

E  - E1

E  (E1)

E  id

Semantic Rule

S.nptr := mknode(‘:=’, mkleaf(id, id.entry), E.nptr)

E.nptr := mknode(‘+’, E1.nptr, E2.nptr)

E.nptr := mknode(‘*’, E1.nptr, E2.nptr)

E.nptr := mknode(‘uminus’, E1.nptr)

E.nptr := E1.nptr

E.nptr := mkleaf(id, id.entry)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

5

Abstract Syntax Trees
E.nptr

* E.nptr

E.nptr a

b

+ E.nptr

*

a +

b c

E.nptr

c

E.nptr

()

a * (b + c)

Pro: easy restructuring of code

 and/or expressions for

 intermediate code optimization

Cons: memory intensive AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

6

Abstract Syntax Trees versus

DAGs

:=

a +

*

uminus b

c

*

uminus b

c

:=

a +

*

uminus b

c

Tree DAG

a := b * -c + b * -c

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

7

Postfix Notation

a := b * -c + b * -c

a b c uminus * b c uminus * + assign

iload 2 // push b

iload 3 // push c

ineg // uminus

imul // *

iload 2 // push b

iload 3 // push c

ineg // uminus

imul // *

iadd // +

istore 1 // store a

Bytecode (for example)

Postfix notation represents

operations on a stack

Pro: easy to generate

Cons: stack operations are more

 difficult to optimize AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

8

Three-Address Code

a := b * -c + b * -c

t1 := - c

t2 := b * t1

t3 := - c

t4 := b * t3

t5 := t2 + t4

a := t5

Linearized representation

of a syntax tree

t1 := - c

t2 := b * t1

t5 := t2 + t2

a := t5

Linearized representation

of a syntax DAG

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

9

Three-Address Statements

• Assignment statements: x := y op z, x := op y

• Indexed assignments: x := y[i], x[i] := y

• Pointer assignments: x := &y, x := *y, *x := y

• Copy statements: x := y

• Unconditional jumps: goto lab

• Conditional jumps: if x relop y goto lab

• Function calls: param x… call p, n

return y

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

10

Syntax-Directed Translation into

Three-Address Code

Synthesized attributes:

S.code three-address code for S

S.begin label to start of S or nil

S.after label to end of S or nil

E.code three-address code for E

E.place a name holding the value of E

Productions

S  id := E

 | while E do S

E  E + E

 | E * E

 | - E

 | (E)

 | id

 | num gen(E.place ‘:=’ E1.place ‘+’ E2.place)

t3 := t1 + t2
Code generation

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

11

Syntax-Directed Translation into

Three-Address Code (cont’d)
Productions

S  id := E

S  while E

 do S1

E  E1 + E2

E  E1 * E2

E  - E1

E  (E1)

E  id

E  num

Semantic rules

S.code := E.code || gen(id.place ‘:=’ E.place); S.begin := S.after := nil

(see next slide)

E.place := newtemp();

E.code := E1.code || E2.code || gen(E.place ‘:=’ E1.place ‘+’ E2.place)

E.place := newtemp();

E.code := E1.code || E2.code || gen(E.place ‘:=’ E1.place ‘*’ E2.place)

E.place := newtemp();

E.code := E1.code || gen(E.place ‘:=’ ‘uminus’ E1.place)

E.place := E1.place

E.code := E1.code

E.place := id.name

E.code := ‘’

E.place := newtemp();

E.code := gen(E.place ‘:=’ num.value)
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

12

Syntax-Directed Translation into

Three-Address Code (cont’d)

Production

S  while E do S1

Semantic rule

S.begin := newlabel()

S.after := newlabel()

S.code := gen(S.begin ‘:’) ||

 E.code ||

 gen(‘if’ E.place ‘=‘ ‘0’ ‘goto’ S.after) ||

 S1.code ||

 gen(‘goto’ S.begin) ||

 gen(S.after ‘:’)

…

if E.place = 0 goto S.after

S.code

E.code

goto S.begin

S.begin:

S.after:

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

13

Example

i := 2 * n + k

while i do

 i := i - k

 t1 := 2

 t2 := t1 * n

 t3 := t2 + k

 i := t3

L1: if i = 0 goto L2

 t4 := i - k

 i := t4

 goto L1

L2:
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

14

Implementation of Three-

Address Statements: Quads

Op Arg1 Arg2 Res

(0) umin

us

c t1

(1) * b t1 t2

(2) umin

us

c t3

(3) * b t3 t4

(4) + t2 t4 t5

(5) := t5 a

Quads (quadruples)

Pro: easy to rearrange code for global optimization

Cons: lots of temporaries AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

15

Implementation of Three-

Address Statements: Triples

Op Arg1 Arg2

(0) umin

us

c

(1) * b (0)

(2) umin

us

c

(3) * b (2)

(4) + (1) (3)

(5) := a (4)

Triples

Pro: temporaries are implicit

Cons: difficult to rearrange code AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

16

Implementation of Three-

Address Stmts: Indirect Triples

Op Arg1 Arg2

(14) umin

us

c

(15) * b (14)

(16) umin

us

c

(17) * b (16)

(18) + (15) (17)

(19) := a (18)

Triple container

Pro: temporaries are implicit & easier to rearrange code

Stmt

(0) (14)

(1) (15)

(2) (16)

(3) (17)

(4) (18)

(5) (19)

Program

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

17

Names and Scopes

• The three-address code generated by the syntax-

directed definitions shown on the previous slides

is somewhat simplistic, because it assumes that the

names of variables can be easily resolved by the

back end in global or local variables

• We need local symbol tables to record global

declarations as well as local declarations in

procedures, blocks, and structs to resolve names

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

18

Symbol Tables for Scoping
struct S

{ int a;

 int b;

} s;

void swap(int& a, int& b)

{ int t;

 t = a;

 a = b;

 b = t;

}

void somefunc()

{ …

 swap(s.a, s.b);

 …

}

We need a symbol table

for the fields of struct S

Need symbol table for arguments

and locals for each function

Need symbol table

for global variables

and functions

Check: s is global and has fields a and b

Using symbol tables we can generate

 code to access s and its fields
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

19

Offset and Width for Runtime

Allocation
struct S

{ int a;

 int b;

} s;

void swap(int& a, int& b)

{ int t;

 t = a;

 a = b;

 b = t;

}

void somefunc()

{ …

 swap(s.a, s.b);

 …

}

Subroutine frame holds

arguments a and b and

local t at offsets 0, 4, and 8

a

b

(0)

(4)

a

b

t

(0)

(4)

(8)

Subroutine

frame

fp[0]=

fp[4]=

fp[8]=

The fields a and b of struct S

are located at offsets 0 and 4

from the start of S

The width of S is 8

The width of the frame is 12 AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

20

Example
struct S

{ int a;

 int b;

} s;

void swap(int& a, int& b)

{ int t;

 t = a;

 a = b;

 b = t;

}

void foo()

{ …

 swap(s.a, s.b);

 …

}

a

Trec S

b

s

Tint

Tfun swap

a

b

t

Tref

prev=nil

 prev

prev=nil

 prev

Tfun foo

swap

foo

globals

(0)

(0)

(4)

(8)

(0)

(4)

Table nodes

type nodes

(offset)

[width]

[12]

[0]

[8]

[8]

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

21

Hierarchical Symbol Table

Operations
• mktable(previous) returns a pointer to a new table

that is linked to a previous table in the outer scope

• enter(table, name, type, offset) creates a new entry
in table

• addwidth(table, width) accumulates the total width
of all entries in table

• enterproc(table, name, newtable) creates a new
entry in table for procedure with local scope
newtable

• lookup(table, name) returns a pointer to the entry
in the table for name by following linked tables AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

22

Syntax-Directed Translation of

Declarations in Scope

Synthesized attributes:

T.type pointer to type

T.width storage width of type (bytes)

E.place name of temp holding value of E

Productions

P  D ; S

D  D ; D

 | id : T

 | proc id ; D ; S

T  integer

 | real

 | array [num] of T

 | ^ T

 | record D end

S  S ; S

 | id := E

 | call id (A)

Global data to implement scoping:

tblptr stack of pointers to tables

offset stack of offset values

Productions (cont’d)

E  E + E

 | E * E

 | - E

 | (E)

 | id

 | E ^

 | & E

 | E . id

A  A , E

 | E

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

23

Syntax-Directed Translation of

Declarations in Scope (cont’d)

P  { t := mktable(nil); push(t, tblptr); push(0, offset) }

 D ; S

D  id : T

 { enter(top(tblptr), id.name, T.type, top(offset));

 top(offset) := top(offset) + T.width }

D  proc id ;

 { t := mktable(top(tblptr)); push(t, tblptr); push(0, offset) }

 D1 ; S

 { t := top(tblptr); addwidth(t, top(offset));

 pop(tblptr); pop(offset);

 enterproc(top(tblptr), id.name, t) }

D  D1 ; D2
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

24

Syntax-Directed Translation of

Declarations in Scope (cont’d)

T  integer { T.type := ‘integer’; T.width := 4 }

T  real { T.type := ‘real’; T.width := 8 }

T  array [num] of T1

 { T.type := array(num.val, T1.type);

 T.width := num.val * T1.width }

T  ^ T1

 { T.type := pointer(T1.type); T.width := 4 }

T  record

 { t := mktable(nil); push(t, tblptr); push(0, offset) }

 D end

 { T.type := record(top(tblptr)); T.width := top(offset);

 addwidth(top(tblptr), top(offset)); pop(tblptr); pop(offset) } AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

25

Example
s: record

 a: integer;

 b: integer;

 end;

proc swap;

 a: ^integer;

 b: ^integer;

 t: integer;

 t := a^;

 a^ := b^;

 b^ := t;

proc foo;

 call swap(&s.a, &s.b);

a

Trec

b

s

Tint

Tfun swap

a

b

t

Tptr

prev=nil

 prev

prev=nil

 prev

Tfun foo

swap

foo

globals

(0)

(0)

(4)

(8)

(0)

(4)

Table nodes

type nodes

(offset)

[width]

[12]

[0]

[8]

[8]

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

26

Syntax-Directed Translation of

Statements in Scope

S  S ; S

S  id := E

 { p := lookup(top(tblptr), id.name);

 if p = nil then

 error()

 else if p.level = 0 then // global variable

 emit(id.place ‘:=’ E.place)

 else // local variable in subroutine frame

 emit(fp[p.offset] ‘:=’ E.place) }

s

x

y

(0)

(8)

(12)

Globals

a

b

t

(0)

(4)

(8)

Subroutine

frame

fp[0]=

fp[4]=

fp[8]=
… AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

27

Syntax-Directed Translation of

Expressions in Scope
E  E1 + E2 { E.place := newtemp();

 emit(E.place ‘:=’ E1.place ‘+’ E2.place) }

E  E1 * E2 { E.place := newtemp();

 emit(E.place ‘:=’ E1.place ‘*’ E2.place) }

E  - E1 { E.place := newtemp();

 emit(E.place ‘:=’ ‘uminus’ E1.place) }

E  (E1) { E.place := E1.place }

E  id { p := lookup(top(tblptr), id.name);

 if p = nil then error()

 else if p.level = 0 then // global variable

 E.place := id.place

 else // local variable in frame

 E.place := fp[p.offset] }
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

28

Syntax-Directed Translation of

Expressions in Scope (cont’d)
E  E1 ^ { E.place := newtemp();

 emit(E.place ‘:=’ ‘*’ E1.place) }

E  & E1 { E.place := newtemp();

 emit(E.place ‘:=’ ‘&’ E1.place) }

E  id1 . id2 { p := lookup(top(tblptr), id1.name);

 if p = nil or p.type != Trec then error()

 else

 q := lookup(p.type.table, id2.name);

 if q = nil then error()

 else if p.level = 0 then // global variable

 E.place := id1.place[q.offset]

 else // local variable in frame

 E.place := fp[p.offset+q.offset] }
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

