
1

Run-Time Environments

Chapter 7

Copyright Robert van Engelen, Florida State University, 2007
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

2

Procedure Activation and

Lifetime

• A procedure is activated when called

• The lifetime of an activation of a procedure
is the sequence of steps between the first
and last steps in the execution of the
procedure body

• A procedure is recursive if a new activation
can begin before an earlier activation of the
same procedure has ended

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

3

Procedure Activations: Example
program sort(input, output)

 var a : array [0..10] of integer;

 procedure readarray;

 var i : integer;

 begin

 for i := 1 to 9 do read(a[i])

 end;

 function partition(y, z : integer) : integer

 var i, j, x, v : integer;

 begin …

 end

 procedure quicksort(m, n : integer);

 var i : integer;

 begin

 if (n > m) then begin

 i := partition(m, n);

 quicksort(m, i - 1);

 quicksort(i + 1, n)

 end

 end;

 begin

 a[0] := -9999; a[10] := 9999;

 readarray;

 quicksort(1, 9)

 end.

Activations:
begin sort

 enter readarray

 leave readarray

 enter quicksort(1,9)

 enter partition(1,9)

 leave partition(1,9)

 enter quicksort(1,3)

 …

 leave quicksort(1,3)

 enter quicksort(5,9)

 …

 leave quicksort(5,9)

 leave quicksort(1,9)

end sort.

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

4

Activation Trees: Example

s

q(1,9)

q(1,3)

p(1,3) q(1,0) q(2,3)

q(2,1) p(2,3) q(3,3)

p(1,9)

r

q(5,9)

p(5,9) q(5,5) q(7,9)

q(7,7) p(7,9) q(9,9)

Activation tree for the sort program

Note: also referred to as the dynamic call graph
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

5

Control Stack

s

q(1,9)

q(1,3)

p(1,3) q(1,0) q(2,3)

p(1,9)

r

Activations:
begin sort

 enter readarray

 leave readarray

 enter quicksort(1,9)

 enter partition(1,9)

 leave partition(1,9)

 enter quicksort(1,3)

 enter partition(1,3)

 leave partition(1,3)

 enter quicksort(1,0)

 leave quicksort(1,0)

 enter quicksort(2,3)

 …

Control

stack:

Activation tree:

s

q(1,9)

q(1,3)

q(2,3)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

6

Scope Rules

• Environment determines name-to-object

bindings: which objects are in scope?
program prg;

 var y : real;

function x(a : real) : real;

 begin … end;

procedure p;

 var x : integer;

 begin

 x := 1;

 …

 end;

begin

 y := x(0.0);

 …

end.

Variable x locally declared in p

A function x AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

7

Mapping Names to Values

name storage value

environment state

var i;

…

i := 0;

…

i := i + 1;

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

8

Static and Dynamic Notions of

Bindings

Static Notion Dynamic Notion

Definition of a procedure
Activations of the

procedure

Declaration of a name Bindings of the name

Scope of a declaration Lifetime of a binding

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

9

Stack Allocation

• Activation records (subroutine frames) on the run-
time stack hold the state of a subroutine

• Calling sequences are code statements to create
activations records on the stack and enter data in
them

– Caller’s calling sequence enters actual arguments,
control link, access link, and saved machine state

– Callee’s calling sequence initializes local data

– Callee’s return sequence enters return value

– Caller’s return sequence removes activation record

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

10

Activation Records

(Subroutine Frames)

Returned value

Actual parameters

Optional control link

Optional access link

Save machine status

Local data

Temporaries

Caller’s

responsibility

to initialize

Callee’s

responsibility

to initialize

fp

(frame pointer)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

11

Control Links

fp

sp
Control link

Stack

growth

Callee’s activation record

Caller’s activation record

The control link is the old

value of the fp

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

12

Scope with Nested Procedures

 program sort(input, output)

 var a : array [0..10] of integer;

 x : integer;

 procedure readarray;

 var i : integer;

 begin … end;

 procedure exchange(i, j : integer);

 begin x := a[i]; a[i] := a[j]; a[j] := x end;

 procedure quicksort(m, n : integer);

 var k, v : integer;

 function partition(y, z : integer) : integer

 var i, j : integer;

 begin … exchange(i, j) … end

 begin

 if (n > m) then begin

 i := partition(m, n);

 quicksort(m, i - 1);

 quicksort(i + 1, n)

 end

 end;

 begin

 …

 quicksort(1, 9)

 end.
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

13

Access Links (Static Links)
s

a x

q(1,9)

access
 k v

s

a x

q(1,9)

access
 k v

q(1,3)

access
 k v

s

a x

q(1,9)

access
 k v

q(1,3)

access
 k v

p(1,3)

access
 i j

s

a x

q(1,9)

access
 k v

q(1,3)

access
 k v

p(1,3)

access
 i j

e(1,3)

access

The access link points to the

activation record of the static

parent procedure:

s is parent of r, e, and q

q is parent of p
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

14

Accessing Nonlocal Data

• To implement access to nonlocal data a in

procedure p, the compiler generates code to

traverse np - na access links to reach the

activation record where a resides

– np is the nesting depth of procedure p

– na is the nesting depth of the procedure

containing a

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

15

Parameter Passing Modes

• Call-by-value: evaluate actual parameters and
enter r-values in activation record

• Call-by-reference: enter pointer to the storage of
the actual parameter

• Copy-restore (aka value-result): evaluate actual
parameters and enter r-values, after the call copy
r-values of formal parameters into actuals

• Call-by-name: use a form of in-line code
expansion (thunk) to evaluate parameters

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

