Static Checking and Type
Systems

Chapter 6

(cepyright Robert van Engelen, Florida State University, 2007

http://www.onebyzeroedu.com

The Structure of our Compiler
Revisited

Character
stream

— Lexical analyzer

Token

Syntax-directed
static checker Java

Lex specification

stream

>

Syntax-directed bytecode
translator

Yacc specification

Type
checking

Code

generation

JVM specification

http://www.onebyzeroedu.com

Static versus Dynamic Checking

» Static checking: the compiler enforces
programming language’s static semantics

— Program properties that can be checked at
compile time

* Dynamic semantics: checked at run time

— Compiler generates verification code to enforce
programming language’s dynamic semantics

http://www.onebyzeroedu.com

Static Checking

* Typical examples of static checking are
— Type checks
— Flow-of-control checks
— Uniqueness checks

— Name-related checks

http://www.onebyzeroedu.com

Type Checks, Overloading,
Coercion, and Polymorphism

int op(int), op(float);
int f(float) ;
int a, c¢[10], d;

d = c+d; // FAIL

*d = a; // FAIL

a = op(d); // OK: overloading (C++)

a = £f(d); // OK: coersion of d to float

vector<int> v; // OK: template instantiation

http://www.onebyzeroedu.com

Flow-ot-Control Checks

myfunc ()

{ ..
break; // ERROR

}

myfunc ()
{ ..
while (n)
{ ..
if (i>10)
break; // OK

myfunc ()

{ ..
switch (a)
{ case 0:

break; // OK
case 1:

http://www.onebyzeroedu.com

Uniqueness Checks

myfunc ()
{ int i, j, i; // ERROR

}

cnufym(int a, int a) // ERROR

{
}

struct myrec

{ int name;

};

struct myrec // ERROR
{ int id;

};

http://www.onebyzeroedu.com

Name-Related Checks

LoopA: for (int I = 0; I < n; I++)
{ ..

if (a[I] == 0)
break LoopB; // Java labeled loop

http://www.onebyzeroedu.com

One-Pass versus Multi-Pass
Static Checking

* One-pass compiler: static checking for C, Pascal,
Fortran, and many other languages 1s performed 1n
one pass while intermediate code 1s generated

— Influences design of a language: placement constraints

* Multi-pass compiler: static checking for Ada,
Java, and C# 1s performed 1n a separate phase,
sometimes by traversing the syntax tree multiple
times

http://www.onebyzeroedu.com

Type Expressions

» Type expressions are used 1n declarations
and type casts to define or refer to a type
— Primitive types, such as int and bool

— Type constructors, such as pointer-to, array-of,
records and classes, templates, and functions

— Type names, such as typedefs in C and named
types 1n Pascal, refer to type expressions

10

http://www.onebyzeroedu.com

11

Graph Representations for Type
Expressions

int *f (char*,char¥*)

fun fun

ar s/ }nter arg/ }nter
N | . |

pointer pointer int ointer int

char char char

Tregﬂ f)o’\rms DAGs

http://www.onebyzeroedu.com

Cyclic Graph Representations

struct Node
{ int wval;
struct Node *next;

};

/\
val nert
th pointer

Cyclic graph

12

http://www.onebyzeroedu.com

Name Equivalence

* Each type name 1s a distinct type, even
when the type expressions the names refer

to are the same

* Types are 1dentical only if names match

* Used by Pascal (inconsistently)

type link = “node;
var next : link;
last : link;

p : “node;

q, " oehode.

With name equivalence in Pascal:
p # next

p # last
P=9g=r«r
next = last

13

http://www.onebyzeroedu.com

Structural Equivalence of Type
Expressions

* Two types are the same 1f they are
structurally identical

e Used in C, Java, C#

pointer — pointer
struct struct
le nert val next
int pointer 1Jt

\\\\\

14

http://www.onebyzeroedu.com

Structural Equivalence of Type
Expressions (cont’d)

* Two structurally equivalent type
expressions have the same pointer address
when constructing graphs by sharing nodes

struct Node

P &s
{ int wval; ////
struct Node *next; *xp s pointer
}; —_
struct Node s, *p; struct
val next

.p=2ss; // OK N
int

http://www.onebyzeroedu.com

16

Constructing Type Graphs 1n
Yacc

Type *mkint ()

Type *mkarr (Type*,int)

Type *mkptr (Type*)

construct int node 1f not already
constructed

construct array-of-type node
if not already constructed

construct pointer-of-type node
if not already constructed

http://www.onebyzeroedu.com

Syntax-Directed Definitions for
Constructing Type Graphs 1n Yacc

$union

{ Symbol *sym;

int num;

Type *typ;
}
$token INT
3token <sym> ID
$token <int> NUM
stype <typ> type
decl : type ID { addtype($2, $1); }

| type ID ‘[’ NUM ‘]’ { addtype($2, mkarr($1l, $4)); }

type : INT { $$ = mkint(); }
| type ‘*’ { $$ = mkptr($1); }
= mkint () ; }

| /* empty */ { $$

http://www.onebyzeroedu.com

Type Systems

* A type system defines a set of types and
rules to assign types to programming
language constructs

 Informal type system rules, for example “if
both operands of addition are of type
integer, then the result is of type integer”

* Formal type system rules: Post system

18

http://www.onebyzeroedu.com

19

Type Rules 1n Post System

Notation
Type judgments
et
o(v) = 1 where e 1s an expression and t
b = -t 1s a type, are provable or not
Environment p maps objects v
pm=1 phe:r to types T:
p= vi=e:void p(V) =1

pT e, integer p = e, integer

p= e +e,:integer

http://www.onebyzeroedu.com

20

Type System Example

Environment p binds objects to types, for example
p = { (X,integer), {y,integer), (z,char), (1,integer), (2,integer) }
Type checking = theorem proving

The proof that x :=y + 2 is typed correctly:

p(y) = integer _p(2) = integer
o= v :integer pl= 2 :integer
p(x) = integer o y+2:integer
p x:=y+2:void

http://www.onebyzeroedu.com

A Simple Language Example

P—>D;S
D—>D;D

lid: 7
T — boolean
char
integer
array [num | of 7
NT
S— id:=E
if £ then §
while £ do §

E — true

false
literal
num

id
EFand £
E+FE
ElE]
E AN

21

http://www.onebyzeroedu.com

22

Simple Language Example:
Declarations

D—id: T
T'— boolean
I — char

T — integer

T'— array [num | of 7}
I'—>"T,

{ addtype(id.entry, T.type) }
{ T.type .= boolean }

{ T.type .= char }
{ T.type = integer }
{ T.type := array(l..num.val, T .type) }

{ T'type := poimeQ

Parametric types:
type constructor

http://www.onebyzeroedu.com

23

Simple Language Example:
Checking Statements

p=1 phFe:q
pE vi=e:void

S —id :=FE { S.type := if id.type = E.type then void else type error }

Note: the type of id 1s determined by scope’s environment:
id.type = lookup(id.entry)

http://www.onebyzeroedu.com

Simple Language Example:
Checking Statements (cont’d)

S — if £ then §,

o~ e: boolean p s

p ifethens:t

{ S.type = if E.type = boolean then §,.type
else type error }

24

http://www.onebyzeroedu.com

Simple Language Example:
Statements (cont’d)

S — while £ do §,

o~ e: boolean p s

p whileedos:t

{ S.type = if E.type = boolean then §,.type
else type error }

25

http://www.onebyzeroedu.com

Simple Language Example:
Checking Statements (cont’d)

p T s, :void p— s,:void
o s;35s,:void

S—>8,58, {Stype =if S, .type = void and S,.type = void then void
else type error }

http://www.onebyzeroedu.com

Simple Language Example:

Checking Expressions

E — true
E — false
E — literal
E — num
EF—id

p(v) =1

pE v

{ E.type = boolean |}

{ E.type = boolean |}

{ E.type = char }

{ E.type = integer }

{ E.type = lookup(id.entry) }

27

http://www.onebyzeroedu.com

Simple Language Example:
Checking Expressions (cont’d)

E—>E, +E,

p ™ e, :integer p ™ e, : integer
p e, +e,: integer

{ E.type :=if E,.type = integer and E,.type = integer
then integer else type error }

28

http://www.onebyzeroedu.com

29

Simple Language Example:
Checking Expressions (cont’d)

p—e, :boolean p = e, : boolean
p e, and e, : boolean

E — E, and E, { E.type :=if E,.type = boolean and E,.type = boolean
then boolean else type error }

http://www.onebyzeroedu.com

30

Simple Language Example:
Checking Expressions (cont’d)

p e carray(s,t) p = e, : integer
P elle] it

E—>FE | E,] {Etype:=if E,.type = array(s, t) and E,.type = integer
then ¢ else type error }

http://www.onebyzeroedu.com

31

Simple Language Example:
Checking Expressions (cont’d)

p ™ e : pointer(t)
pHen:t

E—>E " { E.type :=if E,.type = pointer(t) then ¢ else type error }

http://www.onebyzeroedu.com

A Simple Language Example:
Functions

I'—> T->T E—>E(E)

For example:

v : integer;
odd : integer -> boolean;
if odd(3) then

v :=1;

32

http://www.onebyzeroedu.com

Simple Language Example:
Function Declarations

I'—> T, ->T, {Ttype:=function(T,.type, T,.type) }

Parametric type:
type constructor

33

http://www.onebyzeroedu.com

Simple Language Example:
Checking Function Invocations

p ™~ e, : function(o, 1) pFe:o
pr el(e): 1

E—>E,(E,) {E.type:=if £, .type = function(s, t) and E,.type = s
then ¢ else type error }

34

http://www.onebyzeroedu.com

Type Conversion and Coercion

» Type conversion 1s explicit, for example
using type casts

» Type coercion 1s implicitly performed by
the compiler

* Both require a type system to check and
infer types for (sub)expressions

35

http://www.onebyzeroedu.com

36

Syntax-Directed Definitions for
Type Checking 1n Yacc

51
enum Types {Tint, Tfloat, Tpointer, Tarray, .. }’,
typedef struct Type
{ enum Types type;
struct Type *child; // at most one type parameter

} Type;
%}

$union

{ Type *typ:;
}

stype <typ> expr

oP
oP

http://www.onebyzeroedu.com

Syntax-Directed Definitions for
Type Checking 1n Yacc (cont’d)

o O
%%

expr : expr ‘+’' expr { if ($1->type !'= Tint
|| $3->type !'= Tint)
semerror (“non-int operands in +”);
$$ = mkint();
emit (iadd) ;
}

37

http://www.onebyzeroedu.com

Syntax-Directed Definitions for
Type Coercion 1n Yacc

o° :
oP

expr : expr ‘+’ expr

{ if ($1->type == Tint && $3->type == Tint)
{ $$ = mkint(); emit(iadd);
}
else if ($S1->type == Tfloat && $3->type == Tfloat)
{ $$ = mkfloat(); emit(fadd)
}
else if (S1l->type == Tfloat && $3->type == Tint)
{ $$ = mkfloat(); emit(i2f); emit (fadd);
}
else if ($1->type == Tint && $3->type == Tfloat)

{ $$ = mkfloat(); emit(swap); emit(i2f); emit (fadd) ;

}

else semerror (“type error in +”);
$$ = mkint();

38

http://www.onebyzeroedu.com

Syntax-Directed Definitions for
[-Values and R-Values 1n Yacc

5 {

typedef struct Node

{ Type *typ; // type structure
int islval; // 1 if L-value

} Node;

%}

$union
{ Node *rec;

}

$type <rec> expr

[oJNe)
%%

39

http://www.onebyzeroedu.com

40

Syntax-Directed Definitions for
[-Values and R-Values 1n Yacc

expr : expr ‘+’' expr
{ if ($1->typ->type != Tint || $3->typ->type !'= Tint)
semerror (“non-int operands in +”);
$$->typ = mkint();
$$->islval = FALSE;
emit(..);
}
| expr ‘=’ expr
{ if ('$1->islval || $1->typ !'= $3->typ)
semerror (“invalid assignment”) ;
$$->typ = $1->typ;
$$->islval = FALSE;
emit(..);

| ID
{ $$->typ = lookup ($1);
S$->islval = TRUE;
wemit () ;
)

http://www.onebyzeroedu.com

