
1

Static Checking and Type

Systems

Chapter 6

Copyright Robert van Engelen, Florida State University, 2007
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

2

The Structure of our Compiler

Revisited

Lexical analyzer

Syntax-directed

static checker Character

stream
Token

stream

Java

bytecode

Yacc specification

JVM specification Lex specification

Syntax-directed

translator

Type

checking

Code

generation

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

3

Static versus Dynamic Checking

• Static checking: the compiler enforces

programming language’s static semantics

– Program properties that can be checked at

compile time

• Dynamic semantics: checked at run time

– Compiler generates verification code to enforce

programming language’s dynamic semantics

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

4

Static Checking

• Typical examples of static checking are

– Type checks

– Flow-of-control checks

– Uniqueness checks

– Name-related checks

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

5

Type Checks, Overloading,

Coercion, and Polymorphism

int op(int), op(float);

int f(float);

int a, c[10], d;

d = c+d; // FAIL

*d = a; // FAIL

a = op(d); // OK: overloading (C++)

a = f(d); // OK: coersion of d to float

vector<int> v; // OK: template instantiation

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

6

Flow-of-Control Checks

myfunc()

{ …

 break; // ERROR

}

myfunc()

{ …

 switch (a)

 { case 0:

 …

 break; // OK

 case 1:

 …

 }

}

myfunc()

{ …

 while (n)

 { …

 if (i>10)

 break; // OK

 }

}
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

7

Uniqueness Checks

myfunc()

{ int i, j, i; // ERROR

 …

}

cnufym(int a, int a) // ERROR

{ …

}

struct myrec

{ int name;

};

struct myrec // ERROR

{ int id;

};
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

8

Name-Related Checks

LoopA: for (int I = 0; I < n; I++)

 { …

 if (a[I] == 0)

 break LoopB; // Java labeled loop

 …

 }

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

9

One-Pass versus Multi-Pass

Static Checking

• One-pass compiler: static checking for C, Pascal,

Fortran, and many other languages is performed in

one pass while intermediate code is generated

– Influences design of a language: placement constraints

• Multi-pass compiler: static checking for Ada,

Java, and C# is performed in a separate phase,

sometimes by traversing the syntax tree multiple

times

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

10

Type Expressions

• Type expressions are used in declarations

and type casts to define or refer to a type

– Primitive types, such as int and bool

– Type constructors, such as pointer-to, array-of,

records and classes, templates, and functions

– Type names, such as typedefs in C and named

types in Pascal, refer to type expressions

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

11

Graph Representations for Type

Expressions

int *f(char*,char*)

fun

args pointer

char

int pointer

char

pointer

Tree forms

fun

args pointer

char

int pointer

DAGs
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

12

Cyclic Graph Representations

struct Node

{ int val;

 struct Node *next;

};

struct

val

pointer int

Cyclic graph

next

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

13

Name Equivalence

• Each type name is a distinct type, even

when the type expressions the names refer

to are the same

• Types are identical only if names match

• Used by Pascal (inconsistently)

type link = ^node;

var next : link;

 last : link;

 p : ^node;

 q, r : ^node;

With name equivalence in Pascal:
p ≠ next

p ≠ last

p = q = r

next = last AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

14

Structural Equivalence of Type

Expressions

• Two types are the same if they are

structurally identical

• Used in C, Java, C#

struct

val next

int

pointer

struct

val

int

pointer =

pointer

next

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

15

Structural Equivalence of Type

Expressions (cont’d)

• Two structurally equivalent type

expressions have the same pointer address

when constructing graphs by sharing nodes

struct

val

int

pointer s

p struct Node

{ int val;

 struct Node *next;

};

struct Node s, *p;

… p = &s; // OK

… *p = s; // OK

next

&s

*p

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

16

Constructing Type Graphs in

Yacc

Type *mkint() construct int node if not already

 constructed

Type *mkarr(Type*,int) construct array-of-type node

 if not already constructed

Type *mkptr(Type*) construct pointer-of-type node

 if not already constructed

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

17

Syntax-Directed Definitions for

Constructing Type Graphs in Yacc
%union

{ Symbol *sym;

 int num;

 Type *typ;

}

%token INT

%token <sym> ID

%token <int> NUM

%type <typ> type

%%

decl : type ID { addtype($2, $1); }

 | type ID „[‟ NUM „]‟ { addtype($2, mkarr($1, $4)); }

 ;

type : INT { $$ = mkint(); }

 | type „*‟ { $$ = mkptr($1); }

 | /* empty */ { $$ = mkint(); }

 ; AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

18

Type Systems

• A type system defines a set of types and

rules to assign types to programming

language constructs

• Informal type system rules, for example “if

both operands of addition are of type

integer, then the result is of type integer”

• Formal type system rules: Post system

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

19

Type Rules in Post System

Notation




 e1 : integer 


 e2 : integer




 e1 + e2 : integer

Type judgments

e : 

where e is an expression and 

is a type, are provable or not

Environment  maps objects v

to types :

(v) = 

(v) = 




 v : 




 e : 




 v := e : void

(v) = 

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

20

Type System Example




 y + 2 : integer




 x := y + 2 : void

Environment  binds objects to types, for example

 = { x,integer, y,integer, z,char, 1,integer, 2,integer }

Type checking = theorem proving

The proof that x := y + 2 is typed correctly:

(y) = integer




 y : integer

(x) = integer

(2) = integer




 2 : integer

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

21

A Simple Language Example

P  D ; S

D  D ; D

  id : T

T  boolean

  char

  integer

  array [num] of T

  ^ T

S  id := E

  if E then S

  while E do S

  S ; S

E  true

  false

  literal

  num

  id

  E and E

  E + E

  E [E]

  E ^

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

22

Simple Language Example:

Declarations

D  id : T { addtype(id.entry, T.type) }

T  boolean { T.type := boolean }

T  char { T.type := char }

T  integer { T.type := integer }

T  array [num] of T1 { T.type := array(1..num.val, T1.type) }

T  ^ T1 { T.type := pointer(T1)

Parametric types:

type constructor AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

23

Simple Language Example:

Checking Statements

S  id := E { S.type := if id.type = E.type then void else type_error }




 e : 




 v := e : void

(v) = 

Note: the type of id is determined by scope’s environment:

id.type = lookup(id.entry)
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

24

Simple Language Example:

Checking Statements (cont’d)

S  if E then S1 { S.type := if E.type = boolean then S1.type

 else type_error }

 s : 




 if e then s : 

 e : boolean





AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

25

Simple Language Example:

Statements (cont’d)

S  while E do S1 { S.type := if E.type = boolean then S1.type

 else type_error }

 s : 




 while e do s : 

 e : boolean





AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

26

Simple Language Example:

Checking Statements (cont’d)

S  S1 ; S2 { S.type := if S1.type = void and S2.type = void then void

 else type_error }

 s2 : void




 s1 ; s2 : void

 s1 : void





AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

27

Simple Language Example:

Checking Expressions

E  true { E.type = boolean }

E  false { E.type = boolean }

E  literal { E.type = char }

E  num { E.type = integer }

E  id { E.type = lookup(id.entry) }

…

(v) = 




 v : 

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

28

Simple Language Example:

Checking Expressions (cont’d)

E  E1 + E2 { E.type := if E1.type = integer and E2.type = integer

 then integer else type_error }




 e1 : integer 


 e2 : integer




 e1 + e2 : integer

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

29

Simple Language Example:

Checking Expressions (cont’d)

E  E1 and E2 { E.type := if E1.type = boolean and E2.type = boolean

 then boolean else type_error }




 e1 : boolean 


 e2 : boolean




 e1 and e2 : boolean

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

30

Simple Language Example:

Checking Expressions (cont’d)

E  E1 [E2] { E.type := if E1.type = array(s, t) and E2.type = integer

 then t else type_error }




 e1 : array(s, ) 


 e2 : integer




 e1[e2] : 

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

31

Simple Language Example:

Checking Expressions (cont’d)

E  E1 ^ { E.type := if E1.type = pointer(t) then t else type_error }




 e : pointer()




 e ^ : 

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

32

A Simple Language Example:

Functions

T  T -> T E  E (E)

For example:

v : integer;

odd : integer -> boolean;

if odd(3) then

 v := 1;

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

33

Simple Language Example:

Function Declarations

T  T1 -> T2 { T.type := function(T1.type, T2.type) }

Parametric type:

type constructor

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

34

Simple Language Example:

Checking Function Invocations

E  E1 (E2) { E.type := if E1.type = function(s, t) and E2.type = s

 then t else type_error }




 e1 : function(, ) 


 e2 : 




 e1(e2) : 

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

35

Type Conversion and Coercion

• Type conversion is explicit, for example
using type casts

• Type coercion is implicitly performed by
the compiler

• Both require a type system to check and
infer types for (sub)expressions

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

36

Syntax-Directed Definitions for

Type Checking in Yacc

%{

enum Types {Tint, Tfloat, Tpointer, Tarray, … };

typedef struct Type

{ enum Types type;

 struct Type *child; // at most one type parameter

} Type;

%}

%union

{ Type *typ;

}

%type <typ> expr

%%

…
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

37

Syntax-Directed Definitions for

Type Checking in Yacc (cont’d)

…

%%

expr : expr „+‟ expr { if ($1->type != Tint

 || $3->type != Tint)

 semerror(“non-int operands in +”);

 $$ = mkint();

 emit(iadd);

 }

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

38

Syntax-Directed Definitions for

Type Coercion in Yacc
…

%%

expr : expr „+‟ expr

 { if ($1->type == Tint && $3->type == Tint)

 { $$ = mkint(); emit(iadd);

 }

 else if ($1->type == Tfloat && $3->type == Tfloat)

 { $$ = mkfloat(); emit(fadd);

 }

 else if ($1->type == Tfloat && $3->type == Tint)

 { $$ = mkfloat(); emit(i2f); emit(fadd);

 }

 else if ($1->type == Tint && $3->type == Tfloat)

 { $$ = mkfloat(); emit(swap); emit(i2f); emit(fadd);

 }

 else semerror(“type error in +”);

 $$ = mkint();

 }
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

39

Syntax-Directed Definitions for

L-Values and R-Values in Yacc

%{

typedef struct Node

{ Type *typ; // type structure

 int islval; // 1 if L-value

} Node;

%}

%union

{ Node *rec;

}

%type <rec> expr

%%

…
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

40

Syntax-Directed Definitions for

L-Values and R-Values in Yacc
expr : expr „+‟ expr

 { if ($1->typ->type != Tint || $3->typ->type != Tint)

 semerror(“non-int operands in +”);

 $$->typ = mkint();

 $$->islval = FALSE;

 emit(…);

 }

 | expr „=‟ expr

 { if (!$1->islval || $1->typ != $3->typ)

 semerror(“invalid assignment”);

 $$->typ = $1->typ;

 $$->islval = FALSE;

 emit(…);

 }

 | ID

 { $$->typ = lookup($1);

 $$->islval = TRUE;

 emit(…);

 }
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

