
1

Syntax-Directed Translation

Part II

Chapter 5

Copyright Robert van Engelen, Florida State University, 2007
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

2

Translation Schemes using

Marker Nonterminals

S  if E M then S { backpatch(M.loc, pc-M.loc) }

M   { emit(iconst_0); M.loc := pc; emit(if_icmpeq, 0) }

S  if E { emit(iconst_0); push(pc); emit(if_icmpeq, 0) }

 then S { backpatch(top(), pc-top()); pop() }

Need a stack!

(for nested if-then)

Synthesized attribute

(automatically stacked)

Insert marker nonterminal

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

3

Translation Schemes using

Marker Nonterminals in Yacc

S : IF E M THEN S { backpatch($3, pc-$3); }

 ;

M : /* empty */ { emit(iconst_0);

 $$ = pc;

 emit3(if_icmpeq, 0);

 }

 ;

…

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

4

Replacing Inherited Attributes

with Synthesized Lists
D  T L { for all id  L.list : addtype(id.entry, T.type) }

T  int { T.type := ‘integer’ }

T  real { T.type := ‘real’ }

L  L1 , id { L.list := L1.list + [id] }

L  id { L.list := [id] }

D

T.type = ‘real’ L.list = [id1,id2,id3]

L.list = [id1,id2]

L.list = [id1] id2.entry

id1.entry

id3.entry real

,

,

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

5

Replacing Inherited Attributes

with Synthesized Lists in Yacc
%{

typedef struct List

{ Symbol *entry;

 struct List *next;

} List;

%}

%union

{ int type;

 List *list;

 Symbol *sym;

}

%token <sym> ID

%type <list> L

%type <type> T

%%

D : T L { List *p;

 for (p = $2; p; p = p->next)

 addtype(p->entry, $1);

 }

 ;

T : INT { $$ = TYPE_INT; }

 | REAL { $$ = TYPE_REAL; }

 ;

L : L ‘,’ ID

 { $$ = malloc(sizeof(List));

 $$->entry = $3;

 $$->next = $1;

 }

 | ID { $$ = malloc(sizeof(List));

 $$->entry = $1;

 $$->next = NULL;

 }

 ; AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

6

Concrete and Abstract Syntax

Trees

• A parse tree is called a concrete syntax tree

• An abstract syntax tree (AST) is defined by

the compiler writer as a more convenient

intermediate representation
E

+ E T

id

id

id

*

Concrete syntax tree

+

* id

id id

Abstract syntax tree

T T

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

7

Generating Abstract Syntax Trees

E.nptr

+ E.nptr T.nptr

id

id

id

* T.nptr T.nptr

+

id *

id id

Synthesize

AST

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

8

S-Attributed Definitions for

Generating Abstract Syntax Trees

Production

E  E1 + T

E  E1 - T

E  T

T  T1 * id

T  T1 / id

T  id

Semantic Rule

E.nptr := mknode(‘+’, E1.nptr, T.nptr)

E.nptr := mknode(‘-’, E1.nptr, T.nptr)

E.nptr := T.nptr

T.nptr := mknode(‘*’, T1.nptr, mkleaf(id, id.entry))

T.nptr := mknode(‘/’, T1.nptr, mkleaf(id, id.entry))

T.nptr := mkleaf(id, id.entry)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

9

Generating Abstract Syntax Trees

with Yacc

%{

typedef struct Node

{ int op; /* node op */

 Symbol *entry; /* leaf */

 struct Node *left, *right;

} Node;

%}

%union

{ Node *node;

 Symbol *sym;

}

%token <sym> ID

%type <node> E T F

%%

E : E ‘+’ T { $$ = mknode(‘+’, $1, $3); }

 | E ‘-’ T { $$ = mknode(‘-’, $1, $3); }

 | T { $$ = $1; }

 ;

T : T ‘*’ F { $$ = mknode(‘*’, $1, $3); }

 | T ‘/’ F { $$ = mknode(‘/’, $1, $3); }

 | F { $$ = $1; }

 ;

F : ‘(’ E ‘)’ { $$ = $2; }

 | ID { $$ = mkleaf($1); }

 ;

%%

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

10

Eliminating Left Recursion from

a Translation Scheme

A  A1 Y { A.a := g(A1.a, Y.y) }

A  X { A.a := f(X.x) }

A  X { R.i := f(X.x) } R { A.a := R.s }

R  Y { R1.i := g(R.i, Y.y) } R1 { R.s := R1.s }

R   { R.s := R.i }

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

11

Eliminating Left Recursion from

a Translation Scheme (cont’d)

A.a = g(g(f(X.x), Y1.y), Y2.y)

Y2

Y1

X

A.a = g(f(X.x), Y1.y)

A.a = f(X.x)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

12

Eliminating Left Recursion from

a Translation Scheme (cont’d)

R3.i = g(g(f(X.x), Y1.y), Y2.y) Y2

Y1

X

R2.i = g(f(X.x), Y1.y)

R1.i = f(X.x)

A



1. Flow of inherited

attribute values
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

13

Eliminating Left Recursion from

a Translation Scheme (cont’d)

R3.s = R3.i = g(g(f(X.x), Y1.y), Y2.y) Y2

Y1

X

R2.s = R3.s = g(g(f(X.x), Y1.y), Y2.y)

R1.s = R2.s = g(g(f(X.x), Y1.y), Y2.y)

A.s = R1.s = g(g(f(X.x), Y1.y), Y2.y)



2. Flow of synthesized

attribute values
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

14

Generating Abstract Syntax Trees

with Predictive Parsers

E  T { R.i := T.nptr } R { E.nptr := R.s }

R  + T {R1.i := mknode(‘+’, R.i, T.nptr) } R1 { R.s := R1.s }

R  - T {R1.i := mknode(‘-’, R.i, T.nptr) } R1 { R.s := R1.s }

R   { R.s := R.i }

T  id { T.nptr := mkleaf(id, id.entry) }

E  E1 + T { E.nptr := mknode(‘+’, E1.nptr, T.nptr) }

E  E1 - T { E.nptr := mknode(‘-’, E1.nptr, T.nptr) }

E  T { E.nptr := T.nptr }

T  id { T.nptr := mkleaf(id, id.entry) }

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

15

Generating Abstract Syntax Trees

with Predictive Parsers (cont’d)

Node *R(Node *i)

{ Node *s, *i1;

 if (lookahead == ‘+’)

 { match(‘+’);

 s = T();

 i1 = mknode(‘+’, i, s);

 s = R(i1);

 } else if (lookahead == ‘-’)

 { …

 } else

 s = i;

 return s;

}

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

