Syntax-Directed Translation
Part 11

Chapter 5

(cepyright Robert van Engelen, Florida State University, 2007

http://www.onebyzeroedu.com

Translation Schemes using
Marker Nonterminals

Need a stack!

/ (for nested if-then)

S —>if £ { emit(iconst 0); push(pc); emit(if icmpegq, 0) }
then S { backpatch(top(), pc-top()); pop() }

Insert marker nonterminal : Synthesized attribute

l / (automatically stacked)

S — if E M then S { backpatch(M.loc, pc-M.loc) }
M — € { emit(iconst 0); M.loc :=pc; emit(if icmpegq,0) }

http://www.onebyzeroedu.com

Translation Schemes using
Marker Nonterminals 1n Yacc

S : IF EM THEN S { backpatch($3, pc-$3); }

M : /* empty */ { emit(iconst 0);
$$ = pc;
emit3 (if icmpeq, O0);
}

http://www.onebyzeroedu.com

Replacing Inherited Attributes
with Synthesized Lists

D — TL {forallid € L.list : addtype(id.entry, T.type) }
I'— int { T.type := ‘integer’ }

T'— real { T.type := ‘real’ }

L—>L,,id { L.list:= L, .list+ [id] }

L —id { L.list .= [id] }

D —
T'type = ‘real’ L.list =[id,id,,id;]
=
real L.list=]id,.id, id;.entry
|

L.listT [id,] *, id,.entry

idy.cniry

http://www.onebyzeroedu.com

Replacing Inherited Attributes
with Synthesized Lists in Yacc

5 {

typedef struct List

{ Symbol *entry;
struct List *next;

} List;

%)

Sunion

{ int type;
List *list;
Symbol *sym;

}

stoken <sym> ID
stype <list> L
stype <type> T

o9
°°

D

T :

L :

: TL { List *p;
for (p = $2; p; p = p->next)
addtype (p->entry, $1);
}
INT { $$ = TYPE INT; }
| REAL { $$ = TYPE REAL; }
L ‘,’” ID
{ $$ = malloc(sizeof (List));
$$->entry = $3;
$$->next = $1;
}
ID { $$ = malloc(sizeof (List)) ;

$$->entry = $1;
$$->next = NULL;
}

http://www.onebyzeroedu.com

Concrete and Abstract Syntax
Trees

» A parse tree 1s called a concrete syntax tree

* An abstract syntax tree (AST) 1s defined by
the compiler writer as a more convenient
intermediate representation

E
VAR E
E +/T\ 7N\
id
T T * id 7N
‘ id id
id id

Concrete . synfak tree Abstract syntax tree
Y

http://www.onebyzeroedu.com

Generating Abstract Syntax Trees

Synthesize Enptr----____
AST /F\
et e
T .nftr“. T .nftr‘ * id
id V% id Lo
\‘\ \ + :
\ _ “ ¥
~-.__%II774d *

- id id

http://www.onebyzeroedu.com

S-Attributed Definitions for
Generating Abstract Syntax Trees

Production Semantic Rule

E—>E+T Enptr := mknode(‘+’, E,.nptr, T.nptr)

E—->FE -T Enptr := mknode(‘-’, £, .nptr, T.nptr)

E—>T E.nptr .= T.nptr

T'—>T, *id T'nptr := mknode(‘*’, T,.nptr, mkleaf(id, id.entry))
I'—>T,/id T'nptr := mknode(‘/’, T,.nptr, mkleaf(id, id.entry))
I'—>id T'nptr := mkleaf(id, id.entry)

http://www.onebyzeroedu.com

Generating Abstract Syntax Trees

with Yacc

3 {

typedef struct Node

{ int op; /* node op */
Symbol *entry; /* leaf */

struct Node *left, *right;

} Node;
%}

$union

{ Node *node;
Symbol *sym;

}

%$token <sym> ID
$type <node> E T F

o°
o°

o°
o°

: E Y+’ T

E ‘-/

|

H

k! B
T /' F

L

\(I E \)I
ID

S
$$
S

S
$9
$S

$S
$S

mknode (‘+’ ,
mknode ('-’,

$1; }

mknode (‘*’ ,
mknode (‘/’,
$1; }

$2; }
mkleaf ($1) ;

$1,

$1,

$1,
$1,

}

$3);
$3);

$3);
$3);

http://www.onebyzeroedu.com

10

Eliminating Left Recursion from
a Translation Scheme

A—>A,Y {Aa:=g(4,.a, Yy) }
45X {A.a=fXx) }

4

A—>X {R1=/Xx)} R {Aa:=Rs}
R—>Y {Ri=gR1,Yy)} R, {Rs:=R,s}
R—>¢ {Rs:=Ri1}

http://www.onebyzeroedu.com

Eliminating Left Recursion from
a Translation Scheme (cont’d)

A.a=g(g(f(Xx), Y1.y), 1,.y)

/\\

11

http://www.onebyzeroedu.com

Eliminating Left Recursion from
a Translation Scheme (cont’d)

A

/\

X R,i=flXx)
/\\
Y, — Ry.1=g(f(Xx), Y,.y)

/\\

R3.1=g(g(f(Xx), Y1.y), Y,.y)

1. Flow of inherited
attribute values

e

12

http://www.onebyzeroedu.com

Eliminating Left Recursion from
a Translation Scheme (cont’d)

A.s=R,.s = g(g(f(Xx), Y1.y), 1>.y)

T

X Ry.s = R,.s = g(g(f(Xx), Y1.y), Y>.y)

T

Y Ry.s = g(g(f(X.x), Y|.y), Y,.y)

Y}\\’

2. Flow of synthesized

Ry.8 = Ry.1=g(g(lXx), ¥,.y), 1>.y)
attribute values o

13

http://www.onebyzeroedu.com

14

Generating Abstract Syntax Trees
with Predictive Parsers

E — E, + T { Enptr ;= mknode(‘+’, E,.nptr, T.nptr) }
E — E, - T { Enptr .= mknode(‘-’, £,.nptr, T.nptr) }
E — T { Enptr := T.nptr }

I'— id { T.nptr ;= mkleaf(id, id.entry) }

4

E—>T{Ri:=Tnuptr} R { Enptr =R }

R — + T {R,1:=mknode(‘+’, R.1, Tnptr) } R, { R.s =R,.s }
R — - T {R,.1:=mknode(‘-’, R.1, T'.nptr) } R, { R.s:=R,.s}
R—>¢{Rs:=Ri}

T — id { T nptr .= mkleaf(id, id.entry) !}

http://www.onebyzeroedu.com

Generating Abstract Syntax Trees
with Predictive Parsers (cont’d)

Node *R (Node *1i)
{ Node *s, *il;
if (lookahead == ‘+’)
{ match('+’);
s =T();
il = mknode(‘'+’, i, s);
s = R(1i1);
} else if (lookahead == ‘-')
{ ..
} else
s = 1;
return s;

/AILABLE AT

15

http://www.onebyzeroedu.com

