
1

Syntax-Directed Translation

Part I

Chapter 5

Copyright Robert van Engelen, Florida State University, 2007
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

2

The Structure of our Compiler

Revisited

Lexical analyzer
Syntax-directed

translator

Character

stream
Token

stream

Java

bytecode

Yacc specification

with semantic rules
JVM specification Lex specification

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

3

Syntax-Directed Definitions

• A syntax-directed definition (or attribute
grammar) binds a set of semantic rules to
productions

• Terminals and nonterminals have attributes
holding values set by the semantic rules

• A depth-first traversal algorithm traverses the
parse tree thereby executing semantic rules to
assign attribute values

• After the traversal is complete the attributes
contain the translated form of the input

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

4

Example Attribute Grammar

L  E n

E  E1 + T

E  T

T  T1 * F

T  F

F  (E)

F  digit

print(E.val)

E.val := E1.val + T.val

E.val := T.val

T.val := T1.val * F.val

T.val := F.val

F.val := E.val

F.val := digit.lexval

Production Semantic Rule

Note: all attributes in

this example are of

the synthesized type
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

5

Example Annotated Parse Tree

E.val = 16

T.val = 2

9 + 5 + 2

E.val = 14

E.val = 9 T.val = 5

F.val = 9 Note: all attributes in

this example are of

the synthesized type

L

n

T.val = 9 F.val = 5

F.val = 5

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

6

Annotating a Parse Tree With

Depth-First Traversals

procedure visit(n : node);

begin

 for each child m of n, from left to right do

 visit(m);

 evaluate semantic rules at node n

end

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

7

Depth-First Traversals (Example)

E.val = 16

T.val = 2

9 + 5 + 2

E.val = 14

E.val = 9 T.val = 5

F.val = 9 Note: all attributes in

this example are of

the synthesized type

L

n

print(16)

T.val = 9 F.val = 5

F.val = 5

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

8

Attributes

• Attribute values may represent

– Numbers (literal constants)

– Strings (literal constants)

– Memory locations, such as a frame index of a

local variable or function argument

– A data type for type checking of expressions

– Scoping information for local declarations

– Intermediate program representations

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

9

Synthesized Versus Inherited

Attributes

• Given a production
 A  
then each semantic rule is of the form
 b := f(c1,c2,…,ck)
where f is a function and ci are attributes of
A and , and either

– b is a synthesized attribute of A

– b is an inherited attribute of one of the grammar
symbols in 

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

10

Synthesized Versus Inherited

Attributes (cont‟d)

D  T L

T  int

…

L  id

L.in := T.type

T.type := „integer‟

…

… := L.in

Production Semantic Rule inherited

synthesized

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

11

S-Attributed Definitions

• A syntax-directed definition that uses
synthesized attributes exclusively is called
an S-attributed definition (or S-attributed
grammar)

• A parse tree of an S-attributed definition is
annotated with a single bottom-up traversal

• Yacc/Bison only support S-attributed
definitions

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

12

Example Attribute Grammar in

Yacc

%token DIGIT

%%

L : E „\n‟ { printf(“%d\n”, $1); }

 ;

E : E „+‟ T { $$ = $1 + $3; }

 | T { $$ = $1; }

 ;

T : T „*‟ F { $$ = $1 * $3; }

 | F { $$ = $1; }

 ;

F : „(‟ E „)‟ { $$ = $2; }

 | DIGIT { $$ = $1; }

 ;

%%

Synthesized attribute of
parent node F AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

13 Bottom-up Evaluation of

S-Attributed Definitions in Yacc
Stack

$

$ 3

$ F

$ T

$ T *

$ T * 5

$ T * F

$ T

$ E

$ E +

$ E + 4

$ E + F

$ E + T

$ E

$ E n

$ L

Input

3*5+4n$

*5+4n$

*5+4n$

*5+4n$

5+4n$

+4n$

+4n$

+4n$

 +4n$

 4n$

n$

n$

n$

n$

$

$

Action

shift

reduce F  digit

reduce T  F

shift

shift

reduce F  digit

reduce T  T * F

reduce E  T

shift

shift

reduce F  digit

reduce T  F

reduce E  E + T

shift

reduce L  E n

accept

val

_

3

3

3

3 _

3 _ 5

3 _ 5

15

15

15 _

15 _ 4

15 _ 4

15 _ 4

19

19 _

19

Semantic Rule

$$ = $1

$$ = $1

$$ = $1

$$ = $1 * $3

$$ = $1

$$ = $1

$$ = $1

$$ = $1 + $3

print $1
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

14

Example Attribute Grammar with

Synthesized+Inherited Attributes

D  T L

T  int

T  real

L  L1 , id

L  id

L.in := T.type

T.type := ‘integer’

T.type := ‘real’

L1.in := L.in; addtype(id.entry, L.in)

addtype(id.entry, L.in)

Production Semantic Rule

Synthesized: T.type, id.entry

Inherited: L.in AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

15

Acyclic Dependency Graphs for

Parse Trees

A  X Y A.a := f(X.x, Y.y)

X.x := f(A.a, Y.y)

Y.y := f(A.a, X.x)

A.a

X.x Y.y

A.a

X.x Y.y

A.a

X.x Y.y

Direction of

value dependence
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

16

Dependency Graphs with Cycles?

• Edges in the dependency graph determine

the evaluation order for attribute values

• Dependency graphs cannot be cyclic

A.a := f(X.x)

X.x := f(Y.y)

Y.y := f(A.a)

A.a

X.x Y.y

Error: cyclic dependence

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

17

Example Annotated Parse Tree

D

T.type = „real‟ L.in = „real‟

L.in = „real‟

L.in = „real‟ id2.entry

id1.entry

id3.entry real

,

,

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

18

Example Annotated Parse Tree

with Dependency Graph

D

T.type = „real‟ L.in = „real‟

L.in = „real‟

L.in = „real‟ id2.entry

id1.entry

id3.entry real

,

,

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

19

Evaluation Order

• A topological sort of a directed acyclic

graph (DAG) is any ordering m1, m2, …, mn

of the nodes of the graph, such that if

mimj is an edge, then mi appears before mj

• Any topological sort of a dependency graph

gives a valid evaluation order of the

semantic rules

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

20

Example Parse Tree with

Topologically Sorted Actions

D

T1.type = „real‟ L1.in = „real‟

L2.in = „real‟

L3.in = „real‟ id2.entry

id1.entry

id3.entry real

,

,

1

2

3

4 5 6

7 8

9 10

Topological sort:

1. Get id1.entry

2. Get id2.entry

3. Get id3.entry

4. T1.type=„real‟

5. L1.in=T1.type

6. addtype(id3.entry, L1.in)

7. L2.in=L1.in

8. addtype(id2.entry, L2.in)

9. L3.in=L2.in

10. addtype(id1.entry, L3.in)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

21

Evaluation Methods

• Parse-tree methods determine an evaluation order

from a topological sort of the dependence graph

constructed from the parse tree for each input

• Rule-base methods the evaluation order is pre-

determined from the semantic rules

• Oblivious methods the evaluation order is fixed

and semantic rules must be (re)written to support

the evaluation order (for example S-attributed

definitions)

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

22

L-Attributed Definitions

• The example parse tree on slide 18 is traversed
“in order”, because the direction of the edges of
inherited attributes in the dependency graph
point top-down and from left to right

• More precisely, a syntax-directed definition is L-
attributed if each inherited attribute of Xj on the
right side of A  X1 X2 … Xn depends only on

1. the attributes of the symbols X1, X2, …, Xj-1

2. the inherited attributes of A

A.a

X1.x X2.x

Shown: dependences

of inherited attributes AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

23

L-Attributed Definitions (cont‟d)

• L-attributed definitions allow for a natural order of
evaluating attributes: depth-first and left to right

• Note: every S-attributed syntax-directed definition
is also L-attributed

A  X Y X.i := A.i

Y.i := X.s

A.s := Y.s

A

X Y
Y.i:=X.s

X.i:=A.i A.s:=Y.s

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

24

Using Translation Schemes for

L-Attributed Definitions

D  T L

T  int

T  real

L  L1 , id

L  id

L.in := T.type

T.type := ‘integer’

T.type := ‘real’

L1.in := L.in; addtype(id.entry, L.in)

addtype(id.entry, L.in)

Production Semantic Rule

D  T { L.in := T.type } L

T  int { T.type := „integer‟ }

T  real { T.type := „real‟ }

L  { L1.in := L.in } L1 , id { addtype(id.entry, L.in) }

L  id { addtype(id.entry, L.in) }

Translation Scheme

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

25

Implementing L-Attributed

Definitions in Top-Down Parsers

D  T { L.in := T.type } L

T  int { T.type := „integer‟ }

T  real { T.type := „real‟ }

void D()

{ Type Ttype = T();

 Type Lin = Ttype;

 L(Lin);

}

Type T()

{ Type Ttype;

 if (lookahead == INT)

 { Ttype = TYPE_INT;

 match(INT);

 } else if (lookahead == REAL)

 { Ttype = TYPE_REAL;

 match(REAL);

 } else error();

 return Ttype;

}

void L(Type Lin)

{ … }

Attributes in L-attributed

definitions implemented

in translation schemes are

passed as arguments to

procedures (synthesized)

or returned (inherited)

Input:

inherited

attribute

Output:

synthesized

attribute

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

26

Implementing L-Attributed

Definitions in Bottom-Up Parsers
• More difficult and also requires rewriting L-

attributed definitions into translation schemes

• Insert marker nonterminals to remove embedded
actions from translation schemes, that is
 A  X { actions } Y
is rewritten with marker nonterminal N into
 A  X N Y
 N   { actions }

• Problem: inserting a marker nonterminal may
introduce a conflict in the parse table

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

27

Emulating the Evaluation of

L-Attributed Definitions in Yacc

D  T { L.in := T.type } L

T  int { T.type := „integer‟ }

T  real { T.type := „real‟ }

L  { L1.in := L.in } L1 , id

 { addtype(id.entry, L.in) }

L  id { addtype(id.entry, L.in) }

%{

Type Lin; /* global variable */

%}

%%

D : Ts L

 ;

Ts : T { Lin = $1; }

 ;

T : INT { $$ = TYPE_INT; }

 | REAL { $$ = TYPE_REAL; }

 ;

L : L „,‟ ID { addtype($3, Lin);}

 | ID { addtype($1, Lin);}

 ;

%%
AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

28

Rewriting a Grammar to Avoid

Inherited Attributes

D  id L

T  int

T  real

L  , id L1

L  : T

addtype(id.entry, L.type)

T.type := ‘integer’

T.type := ‘real’

addtype(id.entry, L.type)

L.type := T.type

Production Semantic Rule

D  L : T

T  int

T  real

L  L1 , id

L  id

Production

D

T :

id,id, …

D

id,id,… : T

id

int

int

AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career
The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

http://www.onebyzeroedu.com

