Syntax-Directed Translation
Part |

Chapter 5

(cepyright Robert van Engelen, Florida State University, 2007

http://www.onebyzeroedu.com

The Structure of our Compiler

Revisited
Character . Syntax-directed
— Lexical analyzer Token , Y > Java
stream stream translator bytecode
A 3
/ / \
// // \
// \\\
// ’ \
// // \\
. ; Yacc specification : :
Lex specification . prett JVM specification
with semantic rules

http://www.onebyzeroedu.com

Syntax-Directed Definitions

A syntax-directed definition (or attribute
grammar) binds a set of semantic rules to
productions

Terminals and nonterminals have attributes
holding values set by the semantic rules

A depth-first traversal algorithm traverses the
parse tree thereby executing semantic rules to
assign attribute values

After the traversal 1s complete the attributes
contain the translated form of the input

http://www.onebyzeroedu.com

Example Attribute Grammar

Production

L—>En
E—->FE+T
E—>T
T'>T *F
> F
F—>(FE)
F — digit

Semantic Rule

print(E.val)

E.val := E,.val + Tval
E.val := T.val

I'val .= T,.val * Fval
T'val .= Fval

Fval .= E.val

Fval = digit.lexval

Note: all attributes in
this example are of
the synthesized type

http://www.onebyzeroedu.com

Example Annotated Parse Tree

L

N

Eval=16

S

E.val= 14 Tval=2

e \

Eval=29 Tva‘l =5 Fval=35

Note: all attributes in
‘ this example are of
n the synthesized type

o
N
=)

http://www.onebyzeroedu.com

Annotating a Parse Tree With
Depth-First Traversals

procedure visit(n : node);
begin
for each child m of n, from left to right do
visit(m);
evaluate semantic rules at node »
end

http://www.onebyzeroedu.com

Depth-First Traversals (Example)

Eval=9
Tval L 9
Fval =9

|
.....
I

-
s
-
-
-
-
-
-
-
e
7
7

-

-

-
-
-
-
-
-
- —
- —
-
- .
-

Tva‘1=5
Fval=25
5

”
”
s
-
-
’
s
/
1
N
~
S~
=~

S <
T-o
~
N

\\
~

\ AN
\ \
' T'val=2"
c4.val = .
1 * \
1 \
I 1
1

—

9

n

lj 7 print(16)

—-
-
-

Note: all attributes in
this example are of
the synthesized type

http://www.onebyzeroedu.com

Attributes

 Attribute values may represent
— Numbers (literal constants)
— Strings (literal constants)

— Memory locations, such as a frame index of a
local variable or function argument

— A data type for type checking of expressions
— Scoping information for local declarations

— Intermediate program representations

http://www.onebyzeroedu.com

Synthesized Versus Inherited
Attributes

* (G1ven a production

A—> o
then each semantic rule 1s of the form

b :Zﬂcl,cz,. . 5Cr) |
where f1s a function and ¢, are attributes of
A and o, and either
— b 1s a synthesized attribute of A4

— b 1s an inherited attribute of one of the grammar
symbols 1n o

http://www.onebyzeroedu.com

Synthesized Versus Inherited
Attributes (cont’d)

Production SemW inherited
D—>TL (Lin)= T:type
I'— int := ‘Integer’

2-) id = [in synthesized

http://www.onebyzeroedu.com

S-Attributed Definitions

* A syntax-directed definition that uses
synthesized attributes exclusively 1s called
an S-attributed definition (or S-attributed
grammar)

* A parse tree of an S-attributed definition 1s
annotated with a single bottom-up traversal

* Yacc/Bison only support S-attributed
definitions

11

http://www.onebyzeroedu.com

12

Example Attribute Grammar in

Yacc
$token DIGIT
L : E ‘\n’ { printf (“%d\n”, $1); }
E : E ‘+/ T { $ = $1 + $3; }
| T { $$ = $81; }
T : T ‘*x/ F { $$ = 8S1 * 83; }
| F { $$ = $81; }

F: ‘(" E) { ff = $2; }
| DIGIT { (=_$1; }

— Synthesized attribute of
parent node F

oP
oP

http://www.onebyzeroedu.com

Bottom-up Evaluation of

S-Attributed Definitions in Yacc

Stack val Input | Action Semantic Rule
$ B 3*5+4n$ | shift

$3 3 *5+4n$ | reduce F — digit | $$ = $1

$F 3 *5+4n$ | reduce T — F $$ =§1

$T 3 *5+4n$ | shift

$T* |3 5+4n$ | shift

$7*5 |3 5 +4n$ | reduce F — digit | $$ = $1
$T*F |3 5 +4n$ | reduce T > T* F | $$ =81 * $3
$T 15 +4n$ | reduce E > T $§ =§1

$E 15 +4n$ | shift

$ E+ 15 4n$ | shift

SE+4 |15 4 n$ | reduce F — digit | $$=$1
SE+F |15 4 n$ | reduce T — F $6 =§1
SE+T |15 4 n$ | reducceE > E+T | $$=%1+9$3
$E 19 n$ | shift

$En 19 $| reduceL—>En |print$1

$L 1T Srhingecept

13

http://www.onebyzeroedu.com

14

Example Attribute Grammar with
Synthesized+Inherited Attributes

Production Semantic Rule

D—>TL L.n ;= T'type

T — int 1'type .= ‘Integer’

T — real I'type .= real’

L—>L,,id L,.n = L.n; addtype(id.entry, L.in)
L—id addtype(id.entry, L.in)

Synthesized: T.type, id.entry
Inherited: -.L.1n

http://www.onebyzeroedu.com

15

Acyclic Dependency Graphs for
Parse Trees

A.a
A—>XY // \\ A.a:=f(Xx, Yy)
Xx Yy
A.a
/ N Xx=fld.a, Y.y)
Xx Yy

Direction of 4.a
— A\ Yy = f(d.a, XX)
Xx Yy

value dependence

http://www.onebyzeroedu.com

Dependency Graphs with Cycles?

* Edges in the dependency graph determine
the evaluation order for attribute values

* Dependency graphs cannot be cyclic

/A.a \ A.a = f(X.X)
Xx:=fY.y)
X.;(//\?y Y.y =f(4.a)

Error: cyclic dependence

16

http://www.onebyzeroedu.com

Example Annotated Parse Tree

D

/\

T.type = ‘real’ L.in = ‘real’

\ e

real L.n= ‘real’ |, id;.entry

L.in = ‘real” id,.entry

id,.entry

17

http://www.onebyzeroedu.com

Example Annotated Parse Tree
with Dependency Graph

D
o
T.type = ‘real’ L.1in = ‘real’

\ — | T

real [L.in= ‘real’ |, id;.entry

| T

L.in = ‘real” id,.entry

L

id,.entry

18

http://www.onebyzeroedu.com

Evaluation Order

* A topological sort of a directed acyclic
graph (DAG) 1s any ordering m, m,, ..., m,
of the nodes of the graph, such that 1f

m—m; 18 an edge, then m; appears betore m,

J
* Any topological sort of a dependency graph

gives a valid evaluation order of the
semantic rules

19

http://www.onebyzeroedu.com

20

Example Parse Tree with
Topologically Sorted Actions

D

T,.type = ‘real(4) _(5)L,.in= ‘real (6)
| @é(T
%gl - real‘ @ id,.entry
T

@L In = real' @ id,.entry

id,.entry

Topological sort:

1. Getid,.entry

2. Getid,.entry

3. Getid;.entry

4. T,.type=‘real’

5. L,n=T,.type

6. addtype(id,.entry, L,.1n)
7. L,in=L,.in

8. addtype(id,.entry, L,.in)
9. L;in=L,.in

10. aa’a’type(ld1 entry, L;.1n)

http://www.onebyzeroedu.com

21

Evaluation Methods

* Parse-tree methods determine an evaluation order
from a topological sort of the dependence graph
constructed from the parse tree for each input

* Rule-base methods the evaluation order 1s pre-
determined from the semantic rules

» Oblivious methods the evaluation order 1s fixed
and semantic rules must be (re)written to support

the evaluation order (for example S-attributed
definitions)

http://www.onebyzeroedu.com

22

L-Attributed Definitions

 The example parse tree on slide 18 1s traversed
“in order”, because the direction of the edges of
inherited attributes 1n the dependency graph
point top-down and from left to right

 More precisely, a syntax-directed definition 1s L-
attributed 1f each inherited attribute of X; on the
right side of 4 — X, X, ... X depends only on
1. the attributes of the symbols X, X,, ..., X
2. the inherited attributes of 4

Shown: dependences / \
of mmherited atiributes A

/)]A

http://www.onebyzeroedu.com

L-Attributed Definitions (cont’d)

o [-attributed definitions allow for a natural order of
evaluating attributes: depth-first and left to right

X1:=A41

A—>XY i //A\A.szzy.s vy
1:=X.s
/XY,i:zX.sY% As:=Y.s

* Note: every S-attributed syntax-directed definition
is also L-attributed

23

http://www.onebyzeroedu.com

4

Using Translation Schemes for
L-Attributed Definitions

Production Semantic Rule

D—->TL L.in ;= T'type

T — int 1'type := ‘Integer’

T — real I'type .= real’

L—>L,,id L,.n = L.n; addtype(id.entry, L.in)
L—id addtype(id.entry, L.in)

Translation Scheme

D — T{Lin:=Ttype} L

I'— int { T.type := ‘integer’ }

I'— real { T.type := ‘real’ }

L—>{L,.an:=Lin} L,,id { addtype(id.entry, L.in) }
L —d baddype(ddentrys froamny

24

http://www.onebyzeroedu.com

25

Implementing L-Attributed
Definitions in Top-Down Parsers

Attributes in L-attributed
definitions implemented
in translation schemes are
passed as arguments to
procedures (synthesized)
or returned (inherited)

D—T{Lin:=T.type} L
I'— int { T'type := ‘integer’ }
I'— real { T.type := ‘real’ }

void D()

{ Type Ttype = T();
Type Lin = Ttype;
L(Lin) ;

}

Type T()

{ Type Ttype;
if (lookahead == INT)
{ Ttype = TYPE INT;

match (INT) ;
} else if (lookahead == REAL)
{ Ttype = TYPE REAL;
match (REAL) ;
} else error():;

re turn

} Input:

void L (Type @‘7 inherited

{r sangladed attribute

Output:
synthesized
attribute

http://www.onebyzeroedu.com

Implementing L-Attributed
Definitions in Bottom-Up Parsers

e More difficult and also requires rewriting L-
attributed definitions into translation schemes

e Insert marker nonterminals to remove embedded
actions from translation schemes, that 1s
A — X {actions } Y
1s rewritten with marker nonterminal N into
A—>XNY
N — ¢ { actions }

* Problem: inserting a marker nonterminal may
introduce a conflict in the parse table

26

http://www.onebyzeroedu.com

Emulating the Evaluation of
L-Attributed Definitions in Yacc

51
Type Lin; /* global variable */
: %}
D—T{Lin:=Ttype} L %%
T'— int { T.type := ‘integer’ } D : Ts L
T — real .{ T.type.: = ‘real.’} ::> Ts . T { Lin = $1;)
L>{Lim=Lm} L ,id ;
{ addtype(id.entry, L.in) } T : INT { $$ = TYPE INT; }
L — id { addtype(ideentry, Lin) } ~ | REAL { §% = TYPE _RERL;)
L : L ', ID { addtype($3, Lin);}

| ID { addtype ($1, Lin);}

oe
oe

http://www.onebyzeroedu.com

28

Rewriting a Grammar to Avoid
Inherited Attributes

Production Production Semantic Rule
D—>L:T D—idL addtype(id.entry, L.type)
T — int T — int 1'type := ‘Integer’
T — real j> T — real I'type .= real’
L—>L,,id L—,id L, addtype(id.entry, L.type)
L—id L—>:T L.type := T'type

D D

N\ /

http://www.onebyzeroedu.com

