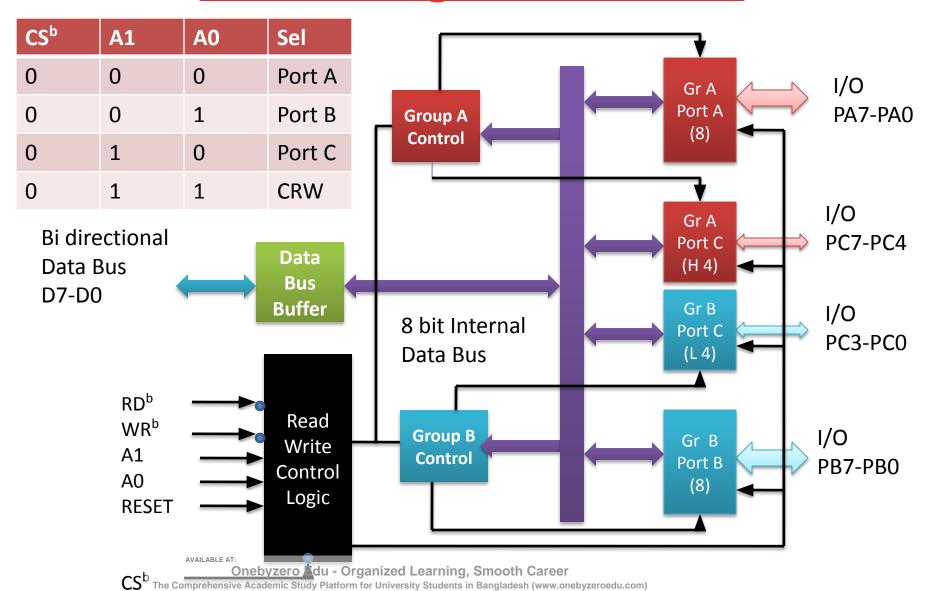
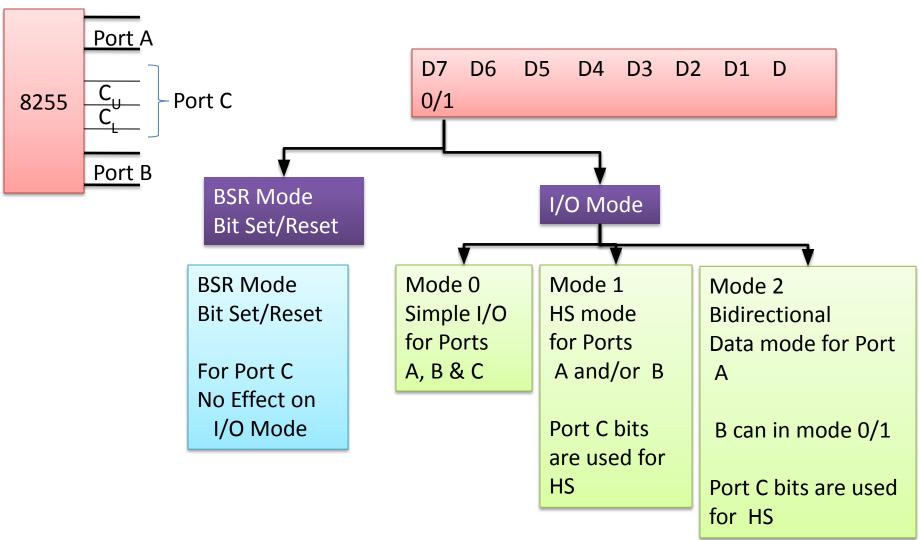

Peripheral Interface Device (8255 modes and examples)

Dr A Sahu

Dept of Computer Science & Engineering

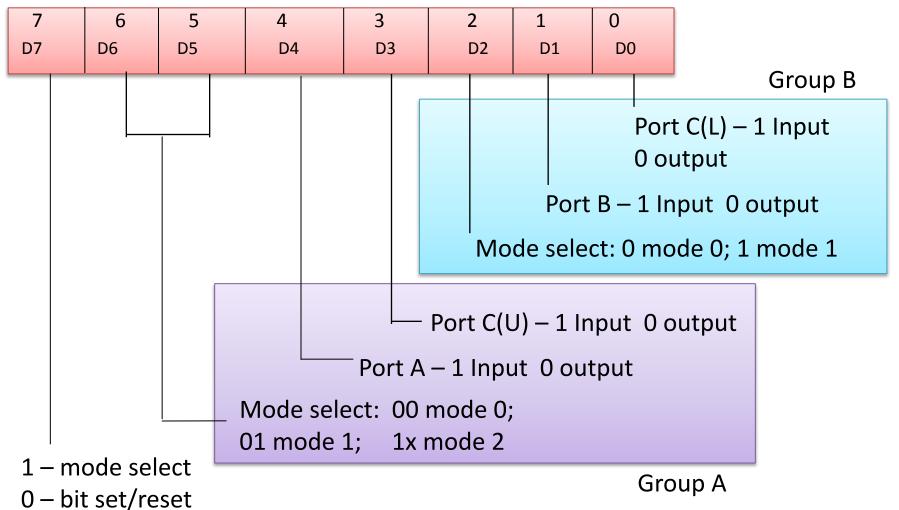
IIT Guwahati


Hierarchy of I/O Control Devices


Outline

- 8255 Architecture and its block diagram
- 8255 Ports and mode of operations
- BSR Mode
- Mode 0
 - Interfacing A/D Converter using Handshake mode using 8255
- Mode 1
 - Interfacing DIP keyboard using Handshake mode using 8255
- Mode 2
 - Interfacing keyboard (with bounce) using Handshake mode using 8255
- Introduction to interrupt controller (8259A)

Block Diagram of 8255



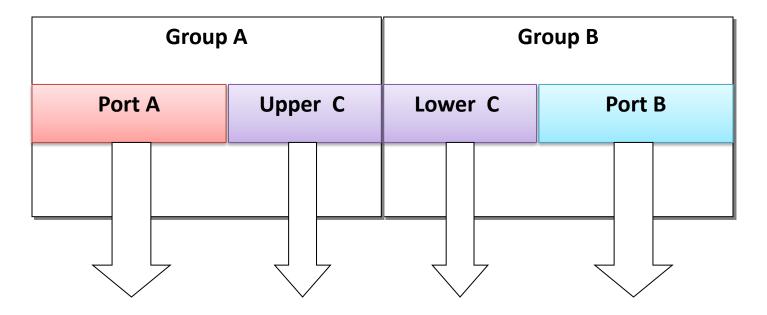
Ports & Modes in 8255

AVAILABLE AT:

Ports & Modes in 8255 : Control register

ΔΛΑΙΙ ΑΒΙ Ε ΔΤ

I/O port Addressing **CRW A7** <u>Port A=80H</u> A6 83H **A5 CS**^b **A4 A3** 8255 Port C=82H A2 **A1 A1 A0** A0 Port B=81H **IOR**^b RD^b **IOW**^b WR^b Reset


Reset

CSb	A1 A0	HEX Address	Port
A7 A6 A5 A4 A3 A2	A1 A0		
1 0 0 0 0 0	0 0	= 80H	Α
	0 1	=81H	В
	1 0	=82H	С
AVAILABLE AT: Onebyzero E	1 1 du - Organized Learning	=83H , Smooth Career	Control Register

The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)

Ports

- Control register controls the overall operation of 8255
- All three ports A, B and C are grouped into two

Operation modes

- 8255 has three modes:
 - Mode 0: basic input-output
 - Mode 1: Strobbed input-output
 - Mode 2: Strobbed bi-directinal bus I/O
- In mode 0
 - Two 8-bit ports and two 4-bit ports
 - Any port can be input or output
 - Outputs are latched, inputs are not latched

Operation modes

• In mode 1:

- -Three ports are divided into two groups
- -Each group contains one 8-bit port and one 4-bit control/data port
- 8-bit port can be either input or output and both latched
- 4-bit port used for control and status of 8-bit data port

• In mode 2

- Only port A is used
- Port A becomes an 8-bit bidiectional bus
- Port C acts as control port (only pins PC3-PC7 are used) AVAILABLE AT:

BSR (Bit Set or Reset Mode)

- Set/Reset bit of Port C
- Heavily used for HS and Interrupt mode
- BSR Control word

D7	D6	D5	D4	D3	D2	D1	D0
0	Not use	ed, So (00	00)	Bit Select			S/R (1/0)
BSR							
Mode							

- BSR Control word
 - To set PC7= 0 000 111 1 (0FH)
 - To reset PC7= 0 000 111 0 (0EH)
 - To set PC3 = 0 000 011 1 (07H)

BSR Mode example

BSR Control word

- To set PC7= 0 000 111 1 (0FH)
- To reset PC7= 0 000 111 0 (0EH)
- To set PC3 = 0 000 011 1 (07H)

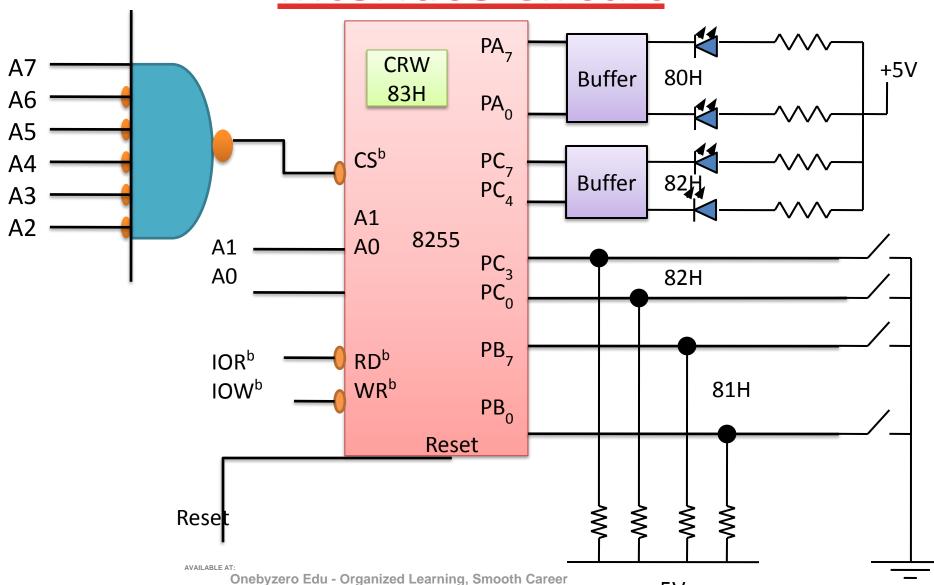
D7	D6	D5	D4	D3	D2	D1	D0
0	Not use	ed, So	(000)	Bit Sele	ct	S/R (1/0)	
BSR Mode							

Generate Activation pulse of Delay D on PC7&PC3

```
MVI
       A,0FH
                   : Load ACC to set PC7
OUT
       83H : set PC7=1
MVI
       A,07H
                   ; Load ACC to set PC3
OUT
       83H
               ; set PC3=1
CALL
       DELAYD;
MVI
       A,06H
                   ; Load ACC to Reset PC3
OUT
       83H
               ; set PC3=1
MVI
                   ; Load ACC to Reset PC7
       A,0EH
```

8255: Mode 0

- Simple I/O for port A,B,C
- Output are latched
- Input are not latched
- Port don't have HS or interrupt capability


8255: Mode 0, Example 1

- Configure
 - Port A and port C_U as out port
 - Port B and port C₁ as in port
- Interface to Read from I/P DIPs and Display at O/P LEDs
- Control word

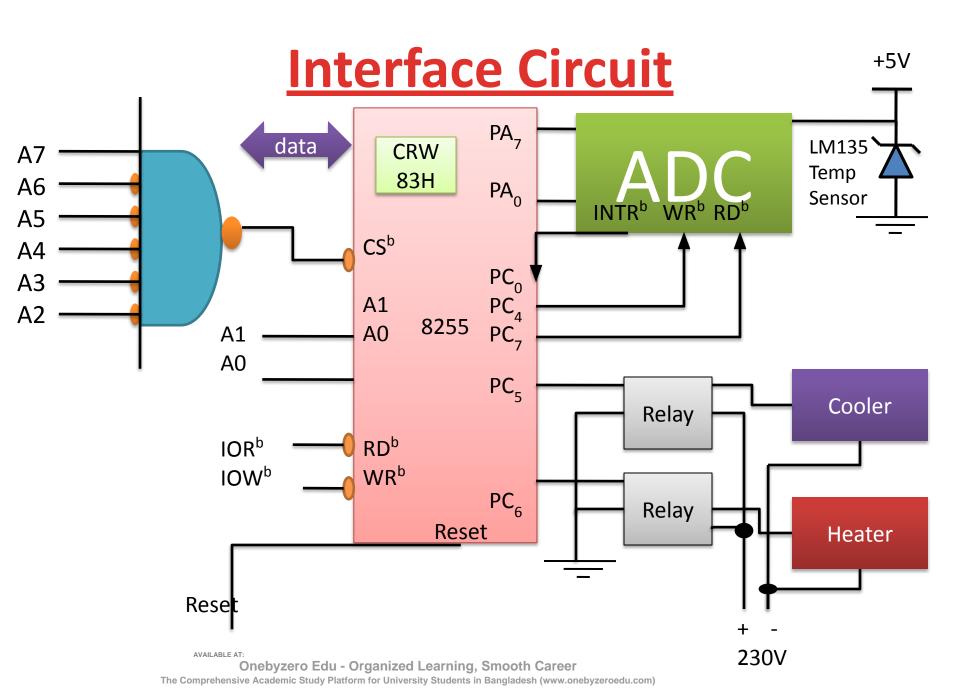
D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	0	0	1	1
I/O function	Port A Mode				Port B in Mode 0		

83H

Interface Circuit

Interface Program

```
MVI A,83H; Load acc with Control word
OUT 83H; Load control register with 83
  at port address 83
IN81H
          ; Read DIP from port B
OUT 80H
             ; Write to LEDs
IN 82H; Read DIP from port C
ANI OFH
             ; Mask upper part of
        port C are not i/p
RLC RLC RLC; Rotate 4 time
             ; Display data at port C,
OUT 82H
HLT
```


AVAILABLE AT

8255: Mode 0, Example 2

- Air Conditioning Room (Temperature Control)
 - Heater and Cooler
 - Temperature Sensor
 - A/D converter
 - Driver Switch to drive Heater/Cooler
- Design an A/C controller using 8255 and 8085 based interfacing circuit
- Read temperature and control the temperature between 20-30 degree Celciuous

8255: Mode 0, Example 2

- Air Conditioning Room (Temperature Control)
 - Heater and Cooler
 - Temperature Sensor
 - A/D converter
 - Driver Switch to drive Heater/Cooler
- Design an A/C controller using 8255 and 8085 based interfacing circuit
- Read temperature and control the temperature between 20-30 degree Celsius
- Use port A in mode 0 and Port C in BSR mode

Interface control

Control word

- Port A as I/P from ADC
- Port C₁: as I/P PC₀ is used for end of conversion
- Port C_U: as O/P PC₄ -> Start con. PC₇ -> assert RD^b signal

D7	D6	D5	D4	D3	D2	D1	D0	
1	0	0	1	0	0	0	1	9:
I/O function	Port A Mode		Port A as I/P	Port C _U As O/P	Port B Is Not us	ed	Port C _L As I/P	

91H

BSR Control word

- 0 (mode) 000 (don't care) 000 (0/1=set/reset)
- Set PC7 high = 0.000 111 1 = 0FH (Send RD^b to ADC)
- Set PC4 low = 0.0001000 = 0.000100 = 0.00000 = 0.000000 = 0.000000
- Set PC5 high = 0 000 101 1 = 0BF (Fan On)
- Set PC5 onebyzero Edu Organized Learning, Smooth Career (Fan Off)

Interface Program to do Temp. Control

```
MVI A, 91H; mode 0 control word
   OUT 83H; Set A& CL as I/P & CU as
   MVI A,0FH ;Set PC7 High
   OUT 83H ; Disable RDb
   MVI A,08H; Set PC4 WRb low
   OUT 83H; Start conversion
   MVI A, 09H; Set PC4 WRb high
   OUT 83H ; Ser WR<sup>b</sup> high
RD: IN 82H
               ; Read Port C to Chck PCO
               ; Place PC0 in Carry Flag
    RAR
    JC RD ;if PC0=1, read Again
    MVI A,0EH ; Set PC7 RDb low
    OUT 83H; Assert RDb signal
               ; Read A/D conv. Port A
    IN 80H
    MOV B,A
               ; get temp in B
```

```
MVI A 0FH; ; Set PC7 (RDb) high
    OUT 83; Disable RDb
    MOV A,B;
    CPI 30D;
                            PC<sub>5</sub> off OAH
    CNC COOLEROFF;
                             PC<sub>5</sub> on 0BH
    CC COOLERON;
    CPI 10D;
    MOV A,B;
                            PC<sub>6</sub>on: OCH
    CNC HEATERON;
                            PC<sub>6</sub>off: 0DH
    CC HEATEROFF;
    RFT
COOLEROFF:
    MVI A, OAH; Reset PC_{\varsigma} to turn off Cooler
    OUT 83H
    RET
```

8255: Mode 1

- Two port A & V function 8 bit I/O
 - Configured either Input or output port
- Each port each 3 lines of port C as HS signal
 - Remaining two lines can be used as simple I/O
- Input and output are latched
- Interrupt logic is supported

PC6, PC7 in In/Out mode

D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	0	0/1	1	1	X=0
I/O function	Port A Mode		Port A as O/P	Port C _u As O/P	Port B in Mode 1	Port B As I/P	Port C _L As I/P

ALH

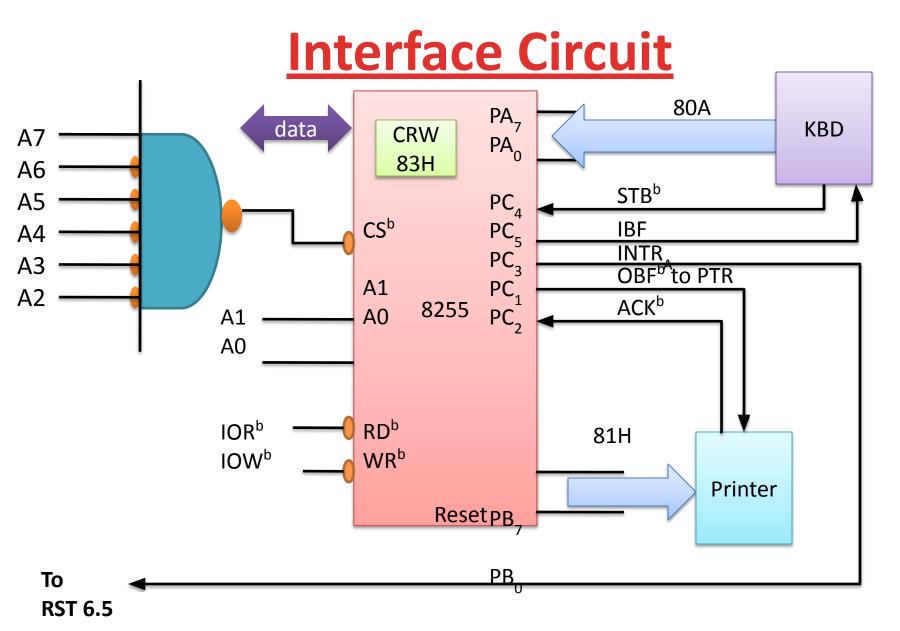
8255: Mode 1: Input Control signal

- STB^b: Strobe generated by Peripheral
- IBF: Input buffer full
 - Acknowledge by 8255 to I/O that I/O latched received
 - Reset when MPU read the data
- INTR: output signal to MPU and it generate when STB^b=1, IBF=1 and INTE=1
- INTE: Enable or disable Interrupt
 - INTE_A is through PC₄, INTE_B is through PC₂
- Status word

D7	D6	D5	D4	D3	D2	D1	D0
OBF ^b _A	INTE _A	1/0	1/0	INTR _A	INTE _B	OBF ^b _B	INTR _B
						7	

AVAILABLE AT:
Onebyzero Edu - Organized Learning, Smooth Career

The Comprehensive Academic Study Platform for University Students in Bangladesh (www.onebyzeroedu.com)


8255: Mode 1, Example

- Designing for interfacing
 - Keyboard with interrupt I/O in port A
 - Output port for a printer using status check I/O
- Control word

D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	1	0	1	0	0
I/O function	Port A Mode		Port A as I/P	PC _{6,7} as	Port B in Mode 1	Port B As O/P	Don't care

B4H

- To generate interrupt INTE_A PC₄ to set in BSR mode
 - 0 (mode) 000 (don't care) 000 (0/1=set/reset)
 - Set PC4 High = 0 000 100 1 = 09F (send INTR to MPU RST 6.5)

Interface Program

Initialization Program

MVI A, B4H; initialize port A as IP and B as O/P

OUT 83H

MVI A,09H; Set INTEA, that is PC4

El ;Enable interrupt

CALL PRINT ; Continue other Task

ISR at 0034 at RST6.5 vector location 0034: JMP READPORTA

READ PORTA:

DI

IN 80H

MOV M, A

INX H

ΕI

RFT AVAILABLE AT:

Onebyzero Edu - Organized Learning, Smooth Career

PRINT: LXI H MEM
MVI B COUNT
MOV A,M

MOV C,A

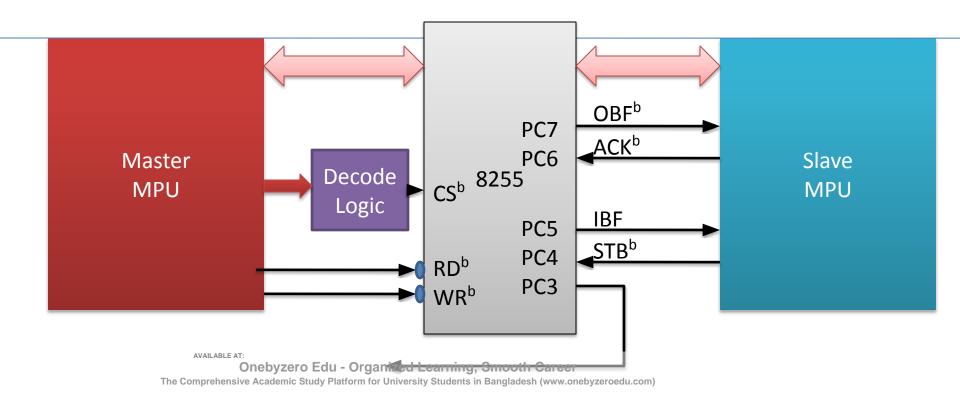
STATUS: IN 82H; from port C for

Status OBF^b

ANI 02H JNZ STATUS

MOV A,C
OUT 81H; Send to port B
printer

INX H DCR B JNZ NEXT

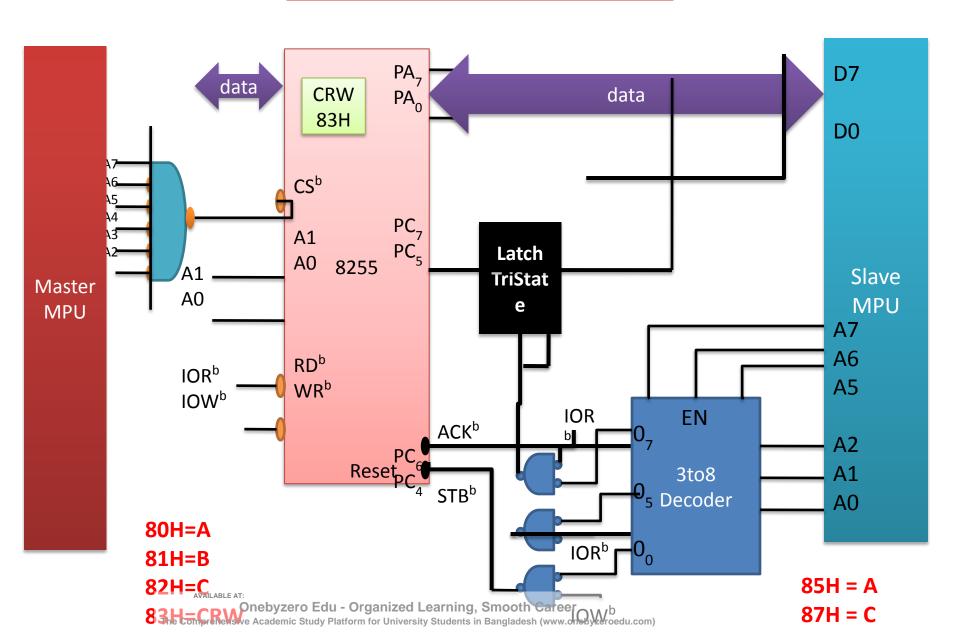

RET

8255: Mode 2: Bi-directional Data transfer

- Bi-directional
 - Data transfer between two MPU
 - Data transfer between MPU and Controller
- Port A can be bi-directional, Port B in either 0 or 1 mode
- Port A use 5 signals from port C as Handshake signal for data transfer

Bi-directional Data transfer between two MPU

- One is Master other is Slave
- Use 8255 as Interfacing device


Data Transfer From Mater to Slave

- Master read the status of OBF to verify whether the previous byte has read by Slave
- Mater write date in port A and 8255 inform to Slave by OBF^b low
- Slave check OBF for data availability
- Slave read the data from port A and ACK low to 8255

Data Transfer From Slave to master

- Slave check the HS signal IBF to find out whether port A is available or not
- Slave Write a data in port A and inform 8255 by enabling STB^b low
- 8255 causes a IBF to go high and MPU get the signal the data byte to read
- Master read the data from port A and make IBF low

Interface Circuit

Control word Mode 2

Control word

D7	D6	D5	D4	D3	D2	D1	D0
1	1	Х	X	X	1/0	1/0	1/0
I/O function	Port A Mode		Port A as Bi		Port B in Mode 1/0	Port B As 1/0	Port C

C0H

Port C bit 2,1,0 mode 0/1

• Status word:

D7	D6	D5	D4	D3	D2	D1	D0
OBF _A	INTE ₁	IBF _A	INTE ₂	INTR _A	X	X	X

RAL instruction to get

the Status AVAILA

Interface program: Master & Slaves

```
Master:
    LXI H, MemptrM
    MVI B, Byte2Trasfer
    MVI A, CTRL; Control word for
             Mode 2
    OUT 83H; Write Control word
OBFLO:
    IN 82H; Read port C
    RAL ; place OBF in CY
    JNC OBFLO;
    OUT 80H; place on Port A
    INX H
    DCR B
    JNZ OBFLO
    HLT
```

```
SLAVE:
    LXI H, MemptrS
    MVI B, Byte2Trasfer
OBFHI:
    IN 87H; Read port C
    RAL ; place OBF in CY
    JC OBFHI;
    IN 85H; Read from Port A
    MOV M, A
    INX H
    DCR B
    JNZ OBFHI
    HLT
```

Introduction to Interrupt controller 8259A

- Acts as a multiplexer, combining multiple interrupt input sources into a single interrupt output to interrupt a single device.
- Original PC introduced in 1981
- Eight interrupt input request lines
 - IRQ0 IRQ7,
 - An interrupt request output line named INTR
 - Interrupt acknowledgment line named INTA
 - D0 through D7 for communicating the interrupt level or vector offset.
- There are three registers
 - Interrupt Mask Register (IMR)
 - Interrupt Request Register (IRR)
 - In-Service Register (ISR)

Reference

 R S Gaonkar, "Microprocessor Architecture", Chapter 15

Thanks