L R o e
%_.

Data Structires Fundamentals

Second Edition

Data Structures Fundamentals

Md. Rafiqul Islam

Dept. of Computer
Science & Engineering
Khulna University
Khulna

Email: dmril 978 vahoo.com
Webhsite: www.cseku.ac.bd

M. A. Mottalib

Dept. of Computer Science &
Information Technology (CIT)

Islamic University of Technology (IUT)
Gazipur

Email: mottalib@iut-dhaka.edu

Website: www.iutoic-dhaka.edu

Islamic University of Technology (IUT)
Board Bazar, Gazipur-1704, Bangladesh

Published by:

Research, Extension, Advisory Services and Pu blications (REASP)
Islamic University of T echnology (IUT)

A subsidiary organ of Organisation of Islamic Cooperation (OIC)

Board Bazar, Gazipur 1704, Bangladesh

Telephone +RBR02-9201254-50 Exy, 3215, Fax:+8802- 9291260

E-mail . reasp@iut-dhaka.edu, cit@iut-dhaka,edu

Website : www.iutoic-dhaka.edu

Year of Publication (1st Edition) : 2009
Year of Publication (2nd Edition) : 2011

© All rights are reserved by the authors and publisher. No part of
this book may be reproduced in any form by mimeograph or any
other means without permission in writing from the publisher and
authors,

ISBN: 978-984-33-0384-4

Price: Tk. 300
USS 12

Contact for Ordering:

Librarian

Islamic University of Technology (IUT)

Board Bazar, Gazipur 1704, Bangladesh

Telephone 1 +8802-9291254~59 FExt. 3235, Fax: +8802- 9291260
E-mail : library{@iut-dhaka.edu, citi@iut-dhaka.cdu

Cover page & Graphics : A K. M. Shahidur Rahman
Sr. Assistant Secretary
CIT Department, [UT

Printed by : M/s Nishan Computer & Printing
38, Bangla Bazar (2" Floor)
Sadar Ghat, Dhaka -

Dedicated to my father and father-in-law who died while I was

doing my PhD.

---- Md. Rafiqul Islam

Dedicated to my beloved eldest son Zisan Mashroor Hrid, my
father and father-in-law who have left this world for good.

-—-- Md. Abdul Mottalib

I

Message

I am pleased to note that the first edition of the text book Data Structures
Fundamentals has already been exhausted. It proves that the book had good
demand among the students. [appreciate that realizing the demand of the
book the authors have revised it, updated it and steps have been taken for
bringing out a second edition. I congratulate the authors for their meaningful
initiative,

At this point, it is worth mentioning that TUT is very conscious about quality
and it gives particular {m[mrmnce.qn the quality of education. Our cfforts
are always directed towards continuous updating of syllabi by including new
topics to familiarize the students with the contemporary knowledge. I am
confident that the authors given due consideration to this idea,

Although the book was reviewed before the publication of the first edition,
there would always remain some scope for improving its guality both in
terms of its contents and manner of expression. In my view, the best way to
address such problems is to get comments from the users of the book. As
such [hope that the authors have tried to get the comments of the users from
all possible sources and all constructive suggestions have been incorporated
in this edition. Still there might be some points lefi, which could be further
developed. T would therefore, invite the future uscrs to come up with tﬁéir
views and contribute for further improvement of the future editions.

Finally, I sincerely hope that this edition will be more acceptable to the uscrs
than the last edition; it will be more useful to them and meet most of their
demands. Under the situation, T will also feel that the cooperation extended
by IUT in publishing the book has been worthwhile.

i JoF- 1l

Prof. Dr. M., Imtiaz Hossain
Vice-Chaneellor, IUT

PREFACE

This book describes data structures, structural arganization of data and operatian an
thern, an-u-dnys a5 computers become very faster, the nesd ui’pm:cssing large amaoum
of data becomes more acute. And large amount of data can be casily organized angd
managed using datn struem res, The baok is written using easy language and every data
slructure is described g briefly as possible, 3o thy the students get the knowledge abou
data structure using short material. In eacly chapter we have identified @ particular dara
Structure with respect o jis concept and graphical representation. The storing Process
(rmethiod) of data using sirscture in computer's memory has been described, Then we have
discussed abouwt the aperations on the data structures. The main three aperations arg
addition or ingeriion, searching or finding location aned deletion. The operational Process
on data structures are shown using pictorial views and carresponding algorithms have
been described and written in. The algorithms written here are very easy and these will be
helpful to the students 1o build their foundation fior algorithm course,

Other than the data structure, the book provides we chapters like searching and sorling,

and hashing where we have discussed the methods of using data Structures, In searching
and sorting chapter we have provided the analysis of the algorithms, which gives

In this second cdition we have done necessary corrections of the first edifian and major
madifications have heen done in chaprer 4 (linked list), chapler 7 (tree) and chapter 10
(hashing). Each chapter except one is provided with the problem sets for the practical (lak)
cluszes,

The book has additional three chapters given in Appendis. One s data structures in Java
and another s daty struetlres in C¥# These two chapters give the ides of writing
algorithms as well as programs wsing data structures in Java and C#. The third one iz for
practical issues, where codes of some programs using different types of dar structures are
given, The programs arc writlen in O+ Programming language.

This book is suitable for the undergraduate students, wha need to study data structures g g
foundation course. The book i required for the curricula of Bachelor of Computer Science
and Enginesring (CSE), Diplama, Higher Diploma and Postgraduate Diploma in
Compulter Seience/Informuation Technology related courses, The boak is very uzefu] to the
students who have the foundation an CiC+-,

The authors are indebeg to Mr. H. M., Mched] Hasan and Pritish Kumar Ray, wha help us
a lot to write and Prepare some part of the manuscript of this hook, We wish to thank Mr,
Md. Jahidul Islam, Kasif Mizam Khan and 8. M. Mohidul Islam (who were the students af
Computer Science and Engineering Discipline of Khulna University, Khulna) for their
sugpestions in enriching the writing and critical review of the manuscript, The authors alsa
wish to thank Mr. . . Mofassil Wahid, Assistant Professor and Mr. Akmmul Awzim,
Lecturer of Computer Sienes & 0T (CIT) Depr, UT for their help in preparing the
Appendix A on Java and Appendix B oon C# respectively. We are alsn thankful 1o
URAIMOUS reviewers of the manuscripl of the book, for thejr SUZREsTONS in improving the
material and organization of e bool:,

Dr. Md. Rafiqui Islam
Dr. M. A, Mottalib

TABLE OF CONTENTS

CHAPTER ONE: BACKGROUND
L1 Data Structure
1.2 Operations on Data Structure
1.3 Algorithm
1.4 Program
L5 Importance of Data Structure
1.6 Complexity of Algorithm

CHAPTER TWO: ARRAY
2.1 Definition o
22 One Dimensiunalﬁrray !
2.2.1 Definition
2.2.2 Store an element into an array
223 Read (retrieve) a value (element) from an
array
224 Code in C/C++ for storing data in an array
23 Two Dimensional Array :
2.3.1 Definition
232 Store and retrieve values in and from array
233 Two dimensional array representation in
memory
234 Location of an element of a two-
dimensional array

CHAPTER THREE: RECORD
3.1 Definition
3.2 Difference between an array and a record

CHAPTER FOUR: LINKED LIST
4.1 Definition
4.1.1 Node declaration and store data in a node
(in C/C++)
4.1.2 Create a new node

Wb B b e

GO 20 -0 -] w3 o

13
13
15
15

17
15
25
28
31
i |

32

33

4.2

4.3
4.4

4.1.3 Create a linked list

4.1.4 Locate or search a node of a linked list
4.1.5 Inscrt a node into a list
4.1.6 Deletion of a particular node

Doubly Linked List

4.2.1 Definition

4.2.2 Declare a node of a doubly linked list

423 Create a node

4.24 Create a doubly linked list

4.2.5 Insertion of a node into a doubly linked list
4.2.6 Deletion of a node from a doubly link list

XOR link list

Circular linked list

4.4.1 Create a circular linked list

Difference between array and linked list
Comparison of operationy using array and linked
list

CHAPTER FIVE: STACK

=8 |
52

53

5.4

Definition

Array based stack
5.2.1 Push Operation
5.2.2 Pop Operation

Link based stack

3.3.1 Create a link based stack

532 Add an element to the stack (Push
operation)

5.3.3 Deletion of an item {Pop operation)

Applications of Stack

5.4.1 Checking the validity of an arithmetic
ExXpression

3.4.2 Converting an infix arithmetic expression
to its postfix form

3.4.3 Evaluating a postfix expression

33
38
39
43
46
46
47
47
47
49
53
55
58
59
al

65
65
66
66
68
08
69
71

-

73

74

77

CHAPTER SIX: QUEUE

6.1

6.2

7.1

7.2

7.3

Array based queue

6.1.1 Addition of an clement in an array based
quene

6.1.2 Deletion of an clement from a queue

6.1.3 Draw back of array implementation of

queue
Link based queue
6.2.1 Create a link based queue
6.2.2 Add a new node to linked queue
6.2.3 Delete a node from a linked queue

! CHAPTER SEVEN: TREE

Binary Tree

7.1.1 Parent-Child Relationship

7.L.2 Traversal technique of a binary tree
7.1.2.1 Pre-order traversal method
7.1.2.2 In-order traversal method
7.1.2.3 Post-order traversal method

Binary Search Tree (BST)

7.2.1 Searching a particular node value of BST
7.2.2 Add a node to a BST

7.2.3 Delete a node from BST

Heap

7.3.1 Heap Creation

7.3.2 Deletion of maximum from a max-heap
7.3.3 Heap sort

7.3.4 Priority Queue

81
82
52

EEX5E

100
101
102
103
104
105
107
108
110
112
115

121

ii

N "
CHAPTER EIGHT: GRAPH CHAPTER TEN: HASHING 172
8.1 Basics of Graph 121 10.1 Hashing 172
8.2 Graph Traversal (Search) Methods 125 10.2 Hash function . 173
8.2.1 Breadth First Search (BFS) 126 10.2.1 Division method 173
8.2.2 Depth First Search (DFS) 128 ' 10.2.2 Mid-square method 174
8.2.3 Implementation of DFS & BFS using 130 10.2.3 Folding methods 174
different data structure of graph 10.3 Hash collision 175
8.3 Minimum cost spanning tree 131 ' 10.3.1 Linear probing method 175
8.3.1 Prim’s Algorithm 131 10.3.2 Quadratic probing method 177
8.3.2 Kruskal's Algorithm 134 10.3.3 Random probing method i 178
8.4 Single source shortest paths problem 136 10.3.4 Double hashing method 178
10.3.5 Rehashing method | 180
CHAPTER NINE: SEARCHING AND SORTING 145 10.3.6 Chaining method 181
9.1 Searching 145
9.1.1 Linear Scarching 146 APPENDIX-A: DATA STRUCTURES IN JAVA 188
9.1.1.1 Complexity for linear searching 147 11.1 Array 188
9.1.2 Binary Searching 147 11.1.1 Creating an array 188
9.1.2.1 Process 148 11.1.2 Accessing array elements 189
9.1.2.2 Number of comparison te search 150 11.2 Stacks 191
the target element _ 11.2.1 Java code for a stack 191
9.2 Sorting 150 113 Queues 194
9.2.1 Internal sorting 150 11.3.1 A circular queue 194
9.2.2 External sorting 150 11.3.2 Wrapping around 195
9.2.3 Classes of internal sorting 150 11.3.3 Java code for a queue 195
9.2.4 Selection sort 151 11.4 A Simple linked list 199
| 9.2.4.1 Complexity of selection sort 152 11.4.1 The Link class 159
I 9.2.5 Insertion sort 152 11.4.2 The LinkList class 200
9.2.5.1 Complexity of insertion sort 154 11.5 Recursion: Finding factorials 203
9.2.6 Bubble sort 155 11.6 Binary trees ol
9.2.6.1 Complexity of bubble sort 157 11.6.1 The Node class 205
9.2.7 Merge Sort 158 11.6.2 The TreeApp class 206
9.2.7.1 Analysis of merge sort 160 11.6.3 Searching for a node 209
9.2.8 Quick Sort 162 11.6.4 Inserting a node 210
9.2.8.1 Analysis of quick sort 165 11.6.5 Traversing the tree 211

9.3 External Sorting 167 11.6.6 Deleting a node 213

13.4 STACK 201

13.4.1 Creation of a linked based stack 291
APPENDIX-B: DATA STRUCTURE IN C SHARP (C#) 222 135 QUEUE 294
12.1 Arrays | 212 13.5.1 Creation of a linked based quene 294
I2.1.1 One dimensional array 222 13.6 TREE 296
12.1.2 Two dimensional array 223 13.6.1 Creation of a tree (Binary Search Tree) 206
12.1.3 Multi dimensional array 225 13.7 GRAPH 299
12.1.4 Japged Array 226 13.8 SORTING 304
12.1.5 Bit Array 228 13.9 SEARCHING 306
12.1.6 - ArrayList 230 13.10 HASHING 307
"12.2 Pointers 231
12.3 Linked lList 232 BIBLIOGRAPHY ‘ 310
12.4 Stacks 235
12.5 Quecue 238 INDEX 311
12.6 Hashing } 241 !
12,7 Sorting 242
12.7.1 Bubble sort 244
12.7.2 Quick sort 245
12.7.3 Merge sort 246
12.7.4 Insertion sort 248
12.7.5 Sorted list 249
128 Searching 151
12.8.1 Binary searching 251
129 Set 252
1200 Trees 256
1311 Graph 267
APFENDIX-C; PRACTICAL ISSUES 273
Wl ARRAY 273
1V LINKED LIST 276
1V 21 Creation of linked [ist 276
11,22 Search a node from a linked list 278
INAA Delete a particular node from a linked list 283
IV Arrange data of a linked Iist 285
PO IO LINKED LIST 289
LA Crention of a double linked list 289

Vi

+

R

CHAPTER ONE

BACKGROUND

OBJECTIVES: :
¥ Identify data structure

¥ Identily algorithm

¥ ldentify program

¥ Describe the importance of data structure
¥ Identify complexity of algorithm

1.1 Data Structure
In "Data Structure” there are two words, one is data and another is structure.
Data means raw facts or information that can be processed to get results or

products.

Elementary items constitute a unit and that unit may be considered as a
structure. As for example, some elementary items like hand, leg, cyc, ear,
nose, bone and some others constitute a human body. So, human body is a
structure. Similarly some elementary items like pieces of wood, iron, raxine
etc may constitute a chair, which is also a structure, A structure may be
treated as a frame or proforma where we organize some elementary items in
different ways. Like structures in our environment, data structure is also
constituted with some elementary data items.

Data structure is a structure or unit where we organize elementary data items
in different ways and there exists structural relationship among the items.
That means, a data structurc is a means of structural relationships of
clementary data items for storing and retrieving data in computer’s memory.
Usually elementary data items are the elements of a data structure. However,
a data structure may be an efement of another data structure. In other

words a data structure may contain another data structure.

Example of Data Structures: Array, Linked List, Stack, Queue, Tree, Graph,
Hash Table etc,

Types of elementary data item: Character, Integer, Floating point numbers

ele.

2%

Data Structures Fundamentals

Expressions of elementary data in C/C++ programming language are shown

below:
Elementary data ilem Expression in C/CH
Character char
Integer int
Floating point number float

1.2 Operations on Data Strueture
We can also perform some operations on data struclure such as insertion
{addition), deletion (access), searching (locate), sorting, merging etc.

1.3 Algorithm

It is a set or sequence of instructions {steps) that can be followed to perform
a task (prohlem), To write an algorithm we do not strictly follow grammar of
any particular programming language. However its language may be near to
a programming language. Each and every algorithm can be divided into
three sections. First section is input section, where we show which data
elements are to be given. The second section is very important one, which is
aperational or processing section. Here we have to do all necessary
operations, such as computation, taking decision, calling other procedure
{algorithm) ete. The third section is owtput, where we display the result
found from the sccond section.

1.4 Program

A program is a set or sequence of instructions of any programming language
that can be followed to perform a particular task. For a particular problem, at
first we may write an algorithm then the algorithm may be converted into a
program. In a program usually we use a large amount of data. Most of the
cascs these data are not elementary items, where exists structural relationship
between elementary data items. So, the program uses data structure(s). Like
an algorithm, a program can be divided into three sections such as input
seclion, processing section and output section,

Chap.-1 Background 3

1.5 Importance of Data Structure

Computer science and computer engineering deal with two jargons which are
software and hardware. Without software, hardware (electrical, mechanical,
electronic parts of computer that we see and touch) is useless. So, study of
software is very important in computer science, and software consists of
programs, which use different types of data. In a program we not only use
elementary data items but also use different types of organized data. In other
words we use data structure in a program. As we know we writc programs to
solve problems. That means to solve problems we have to use data
structures. The different data structures give us different types of facilities. If
we need to store data in such a way that we have to retrieve data directly
irespective of their storage location, we can get this facility using one type
of data structure such as array gives us such facility. In some cascs, instead
of direct access, we may need efficient use of memory and this can be
performed using linked list. In our daily life we handle list of data such as list
of students, list of customers, list of employees etc. However each of ihese
entities (student, customer, employee ctc.) may have different attributes. As
for example, a student has roll number, name, marks attributes and these are
different in types. Bul, how to organize them so that we can handle different
types of data as a unit. We can get this facility from record or structure.
Thus importance of data structures is many folds in storing, accessing,
arranging data. By achieving the knowledge of data structure we can use
different types of data in programs that are used to solve various problems
required in our life. Without knowledge of data structures we are not be able
to solve problems where we must use them. In programming language there
are provisions to use different types of data structures, so that we can
organize data in different ways and solve the problem properly. In fact, we
can optimize the amount of memory by using proper data types. In other
words, without knowledge of data structures we will not be able o write
program properly, hence we will not be able to solve problem. Therefore, for
the students and teachers of computer science and engineering the
knowledge of data structure is very much essential.

Forma-2

Data Struerures Fundamentals 4

1.6 Complexity of Algarithm

There are two types of complexities: One is time complexity and another is
space complexity,

Time complexity: This complexity is related to execution time of the
algorithm or a program. It depends on the number of element (item)
comparisons and number of element movement {movement of data from one
place to another). However, the complexity of the most of the algorithms
described here related to the number of element comparisons. So, the
complexity of the algorthm is computed with respect to the total number of
element (item) comparisons needed for the algorithm.

Space complexity: This complexity is related to space (memory) needs in
the main memory for the data used to implement the algorithm for solving
any problem. If there n data items used in an algorithm, the space complexity
of the algorithm will be proportional to . \

The complexity of an algorithm {either time coﬁplexiw Or Space
complexity) is represented using asymptotic notations, One of the asymptotic
notations is O (big-oh) notation. In general we write T{n) = O(g(n)) if there
are positive constants C and n. Such that T{n) =cg(n) foralln,n =n, In
words the value of T(n) always lies on or below cgn) forn = ng In this
book we have represented the complexity using O notation. Big-oh (0)
notation is also called upper bound of the complexity. If we get the total
number of element comparisons is Y2 n° — % n, then we can write it as O
(). Since (% n* — % n) < u’. Similarly 100* + 4n + 2 = O (n*). Since
100’ +4n + 2 <l1n’,

Table-1: Shows the advantages and disadvantages of the .vnriou.li data

structures:

Data Structure Advantapes Disadvantages

Array Quick insertion, very fast | Slow search, slow
access if index known deletion, fixed size

Linked list Quick insertion, quick | Slow search
deletion

Stack Provides last-in, first-out | Slow access to other
(LIFO) access items

Queue Provides first-in, first- | Slow access to other
ow(FIFO) access items

Chap.-1 Background -

Data Structure Advantapes Disadvantapes

Binary tree Quick search, insertion, | Deletion algorithm is
deletion (if tree remains | complex .
balanced)

Hash table Very fast access if key | Slow deletion, access

slow if key not known,
inefficient memory

known, Fast insertion

usage.
Heap Fast insertion, deletion Slow access to other
items
Graph models real-world situations | Some algorithms are
slow and complex
Summary:

Data structure is a structure or unit where we organize date items
in different ways and there exists structural relationships of them (data
items).

Algorithm is a set or sequence of instructions (steps) that can be
followed to perform a particular task (problem).

Program is a set or sequence of instructions of a particular
programming language that can be followed to perform a particular task.

Diata structure is the most important building block of a program. It
facilitates organized storage and easy retrieval of data,

There are two types of complexity-the time complexity and the
space complexity. Time complexity is related with the number of ¢lement
comparisons and element movement. Space complexity is used to determine
the memory space usage and requirements for a particular problem.

Data Structures Fundamentals 6

Questions:

1. What do you mean by data structure?
2. What are the objectives of learning data structure?
" What are clementary data types?
4. What do you mean by space complexity?
-7 Define data structure. Give examples,
6. State two complementary goals of the study of data structure,
7. Data structure is a structure that may contain another data structure.
Explain the statement with example,
Define elementary data type and data structure.

0

are normally performed ona particular data structure,
10. Differentiate between atomic data type and structured data type.
11. What is the difference between an algorithm and a program?

What do you mean by a data structure? Explain the basic operations that._

CHAPTER TWO

ARRAY

OBJECTIVES:
¥ Identify array
Show data storing and accessing methods using armay
Write algorithms using array
Identify two-dimensional array
Show data storing and accessing processes using two-
dimensional array
Describe the process of representation of two-dimensional array
in computer's memory
¥ Write algorithms using two-dimensional array

VY ¥YY

Y

ARRAY

2.1 Definition

An array is a finite set of same type of data items. In other words, it is a
collection of homogeneous data items (elements). The elements of an array
are stored in successive memory locations. Any element of an armay is
referred by array name and index number (subscript). There may have many
dimensional arrays. But usually two types of array are widely used; such as
one dimensional (linear) array and two dimensional array,

2.2 One Dimensional Array

2.2.1 Definition

An array that can be represented by only one dimension such as row or
column and that holds finite number of same type of data items is called one
dimensional (linear) array. y

1 2 3 4 5 6 7 8 9 10

23 | 29 } 39

AmayB—®| 0 | 10 [12 | 13 | 19 | 20 | 18

Figure-2.1: Graphical representation of one dimensional array.

Data Structures Fundamentals &

Here1,2,3,, 10 are index number, and 0, 10, 12, 39 are
data items or elements of the array and B is the amay name. Symbolically an

element of the armay is expressed as B; or B[{]), which denotes ith element of

the array, B.

Thus B[4], B[9] denotes respectively the 4™ element and the 9® element of
the array, B,

The name of the array usually is a name constiuted by one or more
characters. Thus array name may be 4, S, Stock, Array! etc. The element of
an array may be number (integer or floating point number) or character.

Expression of one dimensional array in C/C*:
For integer array: int a[10];
For character array: char b[30]);
For floating point array: float c[10];

float B[10];

| i

Data Type Array Name Array Size

Figure-2.2: Declaration of Array in C/C*,

2.2.2 Store an clement into an array
£[4] = 19; it means 19 will be stored in the cell number 4 of the amay of B in
the Figure-2.1. If there is any (previous) value that will be overwritten.

2.2.3 Read (retrieve) a value (element) from an array
x = B[6]; it means the value of x will be 20, since the cell number § of the
amay, £ contains 20 (sce Figure-2.1).

The above expressions are as like as C/C+.

Chap.-2 Array 2

2.2.4 Code in C/C4++ for storing data in an array
int x[107;
for(i=0;i<10; ++i)
scanf ("“%d”, &x[i]);
We can store integer type of data to the amay, x using above segment of
codes.

Code in C/C++ for reading data from an array and the data will be displayed
on the monitor's screen:
for (i =0; i <20; ++i)

printf (“%d”, x{i]);

Problem 2.1: ;
Given z list of elements, write an algorithm to store the list of elements
(numbers) in an array and find out the largest element of the list.

Algorithm 2.1: Algorithm to search the largest element of a list

1. Input; x{1...n}
2for(i=1;i =n;i=i+1)
store data to x[f];
3. large=x[1];
4. forfi=2;i =nji=i+1)
if (x{i] = large), large = x{i]; // that means if any element larger
than the previous upgrade large

5. Output: the largest number (print the value of large)

Comments; x is the armay to store data and n is the size of the list. The above
codc 1s as like as C/C++, but not exactly written in C/C++. We shall follow

this style for other algorithms.

Data Structures Fundamentals 10

Problem 2.2:

Given a linear array with data, find out a particular (specific) element of x

from the array. We do not know the index (cell) number where the element
has been stored.

Algorithm 2.2: Algorithm to search a particular element from a list

I. Input: A set of data in aray a, and variable x ie., the target

element
all... n],x;
2 found=10
Jforfi=1i=mi=i+1)
{
if {ali] == x)
location =i, found =1, break;
b

4. Output: if {found = = 1), print “FOUND" message and location,
else print “NOT FOUND"™ message.

Problem 2.3:

Given a list of intcgers stored in a linear array. Find out the summations of
odd numbers and even numbers separately.

Solution: Given a list of integers, we have to find out the odd numbers and
then we shall add those odd numbers. Similarly, we shall find out the even

numbers in the list and adding those numbers we shall get the summation of
even

To store the results, we require two variables; sum_even and sum odd.
Initially, values of these variables will be zero {0} and every time we find an
even number we shall add it to the sum_even and we find an odd number, we

shall add it to the sum_odd. If a number is divisible by 2 it is even, otherwise
odd.

Chap.-2 Array u

We have to start from the first number of the list. If it is even, it will be
added with the sum_even and if it is odd, it will be added with the sum_odd.
Similarly, we shall access whole list one by ane and add them with either
sum_even (if a number is even) or sum_odd (if a number is odd).

Algorithm 2.3: Algorithm to find the summations of even and odd numbers
1. Input: An array and variables (to store the results of summations)
A[l...n], sum_odd = 0, sum_even = 0;
2. for(i=1;i sni=i+1)
i
if (A[i]%2 == 0), sum_even = sum_even + A[i];
else sum_odd = sum_odd + A[I];
H
3. Output: Summation of odd numbers (print sum_odd) and
summation of even numbers {print sum_even)

Comments: Here A is an array that holds a list of integers and # is the size
of the list. sum_odd, sum_even are two variables to store the summation of

odd numbers and the summation of even numbers respectively.

Problem 2.4:
Given a list of integers stored in a linear array, find out the summations of

numbers in odd indices and even indices scparately.

Solution: This problem is similar to the problem 2.3. Here the difference is
that, we have to check whether the index is odd or even,

Algorithm 2.4: Algorithm to find the summations of even and odd indexed

numbers
1. Input: An array and variables (to store the results of summations})

A[L..n), sum_odd = 0, sum_even =0,
2for(i=1;i snji=i+1)
{

if (%2 == 0), sum_even = sum_cven + A[{T;

Data Structures Fundamentals ; 12

clse sum_odd = sum_odd + Alil;
|)
3. Output: Summation of numbers in odd indices (print sum_odd)
and summation of numbers in even indices (print
sum_even)

Comments: Here A4 is an array that holds a list of integers and n is the size
of the list. sum_odd, sum_even are two variables to store the summation of

numbers at odd positions and the summation of numbers at even positions
respectively.

Problem 2.5;

Given a list of integers stored in a linear array and a data element, insert the
element into the array at a given position,

Algorithm 2.5: Algarithm to insert an element into an array.
L. Input: An array A[1...n], the position of insertion m and the data x,
2, Increase the size of the ammay, A[1...r + 1]
Jfor(i=nmizm;i=i-1) ;

Ali + 1] = A[i];
4. Alm]=x;
5. Output: The array, 4 with size n + 1.

Comments: Here it is assumed that all the cells of the array, 4 contains data,
S0 the data from the positions m to n of 4 are copied (transferred) to the
positions m+! to n+7 of the array 4. Now the position m of the array A is
empty and the element to be inserted in placed at the position.

Problem 2.6:

Given a list of integers stored in a linear array, delete a data from a given
position of the array.

Algorithm 2.6: Algorithm to delete an element from an array.

L. Input: An array A[1...#], and the position of deletion, m.
Xfor{i=mi<ni=i= 1}

Alf] =Ai+1);

3. Qutput: The updated array, 4.

Chap.-2 Array 5

Comments: Here the data of the positions m to n-! are overwritten by the
data of the positions m + [1o n of the armay, 4. Now the position # of the

array is empty.

Problem 2.7: .
Given two linear arrays of integers, merge the two arrays into a single array.

Algorithm 2.7: Algorithm to merge two arrays.
1. Input: Two arrays 4 [1...m] and B[1 ... n]
2. Take an array M [1... m + 0]
dfor(i=l;i<=m;i=i+1)

M) = AL
dfor(i=li<=mi=i+1)

Mli+m] = B[},
5. Output: The merged array, M

Comments: Here the output array is M. For merging the data of the armay, 4
are copicd to the positions ! to m of M and the data of the array, B are copied
to the positions m + { tom +n of M,

2.3 Two Dimensional Array

2.3.1 Definition

T'wo dimensional array is an array that has two dimensions, such as row and
column. Total number of clements in a two dimensional array can be
calculated by multiplication of the number of rows and the number of
columns. If there are m rows and » columns, then the total number of
elements is m % n, and m * n is called the size of the amray. OFf course, the
data elements of the armay will be same type. In mathematics, the two
dimensional array is called a matrix and in business it is called fable. A two
dimensional array can be expressed as follows:

Ajor Ali, j] for 1 =i smand 1 =/ =n (where m and n are the number of
rows and columns respectively, see Figure-2.3),

Data Structures Fundamentals

14
Al s Bty o & 1]
m rows n columns
Figure-2.3: Symbolic representation of two dimensional array.
1 - 5 6 7 B
O OO0 T N B T T R
2 565 | & 737 |7 8)]e
Array B 5 " Size = 6% 8
L O e N IS R
3
Cell B[4][6]
5 s e i
_J i g | LTS
& | 20 | 31 | 32 | 33 | 39 | 40 | 48 | 33

Figure-2.4: Graphical representation of two dimensional array

Two dimensional array can be expressed in C/C** as follows:

int Afm](n]; // Here m is the number of rows and » 15 the number of
columns [see Figure-2.5]

float B[6][5];
A A
|) il

Asray Name Mo, of rows No. of columns

Figure-2.5: Declaration of two dimensional array in C/C++

Size of this array is 6 x 8, So, total number of elements or items is 6x§=48,

Chap.-2 Array 13

2.3.2 Store and retrieve values in and from array

Data elements can be stored in a two dimensional array using loop or

directly as shown below:
int B[7][3];

for(inti=0;i=<7;++§)

{ Hstoring data taken from
keyboard

for(intj=0;7<3;++/) s

scanf (“%ed”, &B[{[F]);

H
Or,
int B[7][3]= {

e 3y,

{9,10,11},
by {/Direct insertion of
Fon clements

{22, 25, 40}

b
Figure-2.6: Program segment in C/C++ to store data in a two dimensional
array.
B[3]{5] = 75; which means 75 will be stored in the cross section of the 4™
row and 6™ column (see Figure-2.4),

On the other hand, x = B[5][2]; here the value of B[5][2] is assigned to x. So,
the element in the position of 6 row and 3™ column will be assigned to the
variable, x.

2.3.3 Two dimensional array representation in memory

The elements of a two dimensional array are stored in computer’s memory
row by row or column By column. If the array is stored as row by row, it is
called row-major order and if the array is stored as column by column, it is
called eolumn-major order. Suppose that there is a two-dimensional array of
size 5 * 6. That means, there are 5 rows and 6 columns in the array,

Data Structures Fundamentals 16

Chap.-2 Array 17

In row-major order, elements of a two dimensional array arc ordered as —

[Aan Au Az Ar A, Arg | Asi Aa Aay, Az, Az, Awy , Ay .
raw | Tow 2

" [‘:ﬁu A Asy, e, Asp
ow 5

and in column-major order, elements are ordered as —

LAen Asr, Aar, Aar, Asd pAsz, Ass, Avg, A, Asd Agy, e o Mg, [Ais Aze A
column | column 2 ﬂl:’.‘llul'll';]—';..; =

Figure-2.7: shows these armangements in details, Here, 1%, 2" 3™ e,
denote the position number {cell number) of the elements of the
array.

e 2nd 3rd 4th &th feh
¥ 4 ¥ L 4 ¥ ¥
An An | An | A | As | Ax
Tih | An | Az | An | Az | Ax | A
138 | Ay

= = - - - | Ay |* 24m

251 + | A A K K A e
i T ¥ ¥
26th 2Ttk 28t Atk 3k

() Row-major order

1et g 11
¥ ¥ ¥
An | Ap | An e L Ay [€ 26%
20 | Ay | An - - = Az, € 27k
3rd | Ay Azn o i i Ay (€ 280
4th > Ay | Ap = = x Ay [+ 200
B + | Asg Az i L Ass Ass [300
ry
25t

{b) Column-major order

Figure-2.7: Pictorial view of two dimensional amay representation in
memory

2.3.4 Location of an clement of a two-dimensional array

Row-major Order:
If Loc (A[f, j]) denotes the location in the memory of the element A[i]lf] or

Ay, then in row-major order —

Loc (A[i, /]) = Base (A) + (n (i- 1)+ (7 - 1)) * w;
Here Base (A) is starting or base address of the armay A, n is the number of
columns and w is the width of each cell, i.e, number bytes per cell.

Column-major Order:
In column-major order,
Loc (A7, /1) = Base (A) + (m (- 1)+ (i- 1)) * w;
Here Base (A) is starting or base address of the array A, m is the number of
rows and w is the cell width.

Example:
Base address, Base (A) = 100, Size of the array = 5 » 6. If the type of array is

integer then find out Loc (A4, 3]).

Solution:
If the array is stored in row-major order:
Loc (A[4, 3] =Base (A)+(n (i- 1)+ {f-1)* 2
=100+ (6=x3+2)*2
= 100 + 40
=140

(2 bytes for each
integer cell in C/C™)

If the array is stored in memory in column-major order:
Loc (A[4, 3]) = Base (A) + m (j- 1)+ (i - 1)* 2
=100+ (5%2+3)*2
= 100+ 26
=126

Problem 2.8: . -
Given a two-dimensional array, find out the summation of the boundary

elements of the array. Here no clement should be added twice.

Data Structures Fundamentals

20
Problem 2.10: Chap.-2 Array : 21
G' " .
I g ;:: : two dimensional array, f'm:i out the summation of diagonal elements Problem 2.11:
Algori :-a}l' : There are 40 students in class. They have written 4 class tests of a course.
; [g:; 1:: m: 2.9 dﬁd gorithm to find out summation of diagonal elements Find out the average of the best 3 class tests for each student.
. - a wo 1 2
[B[/ TTSIM&] T, Solution: First, we compute the summation of marks of 4 class tests for each
| G = {II gl . gtudent. Then we find minimum marks among those 4 class tests. By
- Sy subtracting the minimum marks from the summation and dividing by 3, we
2. Find each diagonal element and add them with sum, get average for each student.
for(i=1i=mi=i+1) . _
for (f=i; j <n; j=j+1) _ | Algorithm 2.1(]:I ; |
if(=f i+ =n+1) b i 1. Input: a two-dimensional array (to store the marks of class tests
} 4 eer iR abli,) of each student) and a one-dimensional armay (to store the
average of marks of each student)

| [Note: Diagonal elements are those elements whose indices are equal (ie. i S ol i S

~/) or their summation results n +1.(ic., i + F=n+1)] 2. Add all class test marks for each student

30 + Pri ;
utput: Print sum as the result of summation of diagonal elements. for(i=1,i =40, i=i+1) /i first loop starts
i
| Array Bla][«] sum = 0;
Rows=5 j %0 pdimey min_mrk = marksi,1];
_ — 5 : s :
| Colmns=5 ; " st for[,r—_l:{; <A =j+ 1) /fsecond loop starts
l Z | - 3 3) sum = sum + marks[ij);
| 3 w i A 3. Find out the minimum {(worst) class test marks
4 : if (min_mrk > marks{i][7]), min_mrk = marks[ij];

| : g " tas } // end of the second loop

4. Compute the average marks of best three class tests,

Figure-2.9: Diagonal elements of a two-dimensional array. T o e
} - ' /f end of the first loop

5. Output: Average of best three class test marks, avg mrk{40];

Comments: Here marks{40, 4] is a two-dimensional array that holds four
I class test marks for each of the 40 students'and avg mrk[40] is an array to .
. store the computed average marks of best three class tests. sum is a variable
to store the summation of all (4) class test marks and min_mrk is a variable

to store the lowest mark of four class tests for each student.

Data Structures Fundamentals

Chap.-2 Array s

Solution: First, we have to identify the boundary elements. In a two
dimensional array, elements of first column and the last column and the first
row and last row are the boundary elements as shown in the Figure-2.8.

Here the index, / represents the row number and j represents the column-
number. When { is 1, the row is the first row and when i is m (where m
represents the number of rows in the array), the row is the last row.
Similarly, when f = 1, the column is the first column and the index of the last

column is f = n. So, a number in a two-dimensional array is a boundary
elementifi=1,i=m,j=larj=n

We shall start from the first number of the array. If it is a boundary element,
the number will be added to the sum {which is a variable to store the result
and initially it is set zero). We shall check every number whether it is a
boundary element or not, if the number is a boundary element it will be
added to sum. Otherwise, we shall proceed with the next number of the list
(array) and continue the process to the end of the list.

Algorithm 2.8: Algorithm to find the summation of boundary elements .
1. Input: a two-dimensional array
Afl...m, 1...n]

sum =(;

2. Find each boundary element
for{i=1;i =m;i=i+1)
for(f=1;j=n; j=j+1)
=11 =1[i=m|j=n), sum=sum + A[i7],

[Boundary elements are those elements whose index i = 1 orj = 1, and those
whose index { = m orj = n) and add it with sum (previous result)].

3. Output: Print sum as the result of summation of boundary elements.
-y

Array B[m][n] Index,i=1

Index;j=n

Index,j=1

Jigurc-2.8: Boundary elements of a two-dimensional armay in a pictorial
view

Problem 2.9:

Gliven a two-dimensional amray find out the summation of the diagonal

glements of the array.

Solution: First, we have to identify the diagonal elements. A diagonal
glement is one, whose either row index and column index are equal or the
gummation of row index and column index is equal to n+/ where n 1s the
number of rows or columns [here, number of columns and number of rows
nre equal].

In the Figure-2,9, shaded elements are diagonal elements, The column
indices of all elements of the first diagonal (from the upper left comer to the
lower right corner) are equal to their corresponding row indices. On the other
hand, in second diagonal (from the upper right corner to the lower left
“worner) the summation of the row index and the column index is n + 1 for all
elements.

We shall start from the first number of the array and check, whether it is a
diagonal element or not. If it is a diagonal element, it will be added to the
sum, which is a vaniable initially set zero to store the result of summation of
all diagonal elements. We shall advance to the next element and one by one
we shall go through the whole list.

If the value of n is an odd number, then the middle number of each of the
two diagonals will be common to both diagonals. So, this number will be

ndded twice, So, this number should be subtracted from final summation
Forma-3 '

Data Structures Fundamentals 22

Note: For each time, to calculate the summation of all class test marks and to
identify the lowest class test mark of a particular student the variables sum
and min_mrk are initialized within the loops.

Summary;

Array is a collection of homogeneous data items, The array, which is
represented by only one dimension (row or column) is called one
dimensional array, whereas an array represented by two dimensions such as
row and column is known as two dimensional array,

Questions:

1. What is linear array? Explain with example,
2. Write an algorithm to find out a particular item from a given list of items
stored in a linear array, :

3. Write an algorithm to insert an item in a particular position of an array.
Given a list of elements stored in an array, write an algorithm to find out
the largest clement from the array.

5. You are given an array of sorted data in ascending order. Write an
algorithm to rearrange the elements of the array in descending erder
without using any sorting algorithm and extra data siructure,

6. What is a linear array? Write an algorithm to delete an item from a
linear array. 4
Define two-dimensional array.

8. Describe how a two-dimensional array can be stored in computer
memory, -

9. How address of a particular element of a two dimensional array can be
computed? Explain, % :

10. Write an algorithm to find out the summation of the diagonal elements
of a two dimensional array.

1. Given an array of size 35 X 40. The base address of the array is 1000.
Find the address of A[18][(32). Write down the formula first, then
calculate.

12. Suppose there is an array A of size 40%30. The base address of the array
15 100. Calculate the address of A[23][15].

] R T T <

23
Chap.-2 Amay I

13. Given a two dimensional array with m % n size. Write an algorithm to
find out summation of the boundary elements, where no element will be
added twice. .

14. Describe when a two-dimensional array is required to use in
programming or Algorithm. , 7

15. Write an Algorithm to print out the following triangle.

1

D, 3

4 5 w6
T e el
T SR Y

16. What is string? Write a procedure to count the number of a given
substring occurs in a given string.

Problems for Practical (I.ab) Class

Array related problems : : :
Problem 2-1: Write a program to enter 10 integers in a one dimensional
atray and display (print) the data on the screen,

Problem 2-2: Write a program to store 10 integers using an array and ﬁn_d
out the summation and average of the numbers. Display the numbers, their
sum and average {with points) separately.

Problem 2-3: Write a program to find out the largest and smallest of a given
list of numbers in an array. Display the numbers, their largest and smallest

separately.

Problem 2-4: Write a program to find out the summation of even numbers
and odd numbers from a given list of numbers in an array. Display the
numbers, the summation of even numbers and odd numbers separately.

Problem 2-5: Write a program to find out the summations of the numbers
stored in even indices and odd indices of an array. Display the numbers, the

two summations separately.

Data Structures Fundamentals 24

Problem 2-6: Write a program to me
: ; : rge two armays (merge two
make single one). Display the data of the three an-a:,es_(erg arrays and

_Prul:-lcm .?'-T: inen an array with data in all positions. Write a program to
Insert an item in a particular position of an array in such a way that no data
'I:J-TI" be_ l_nsl and data will be in previous order. Hints: insert an element, x in
tth position where i < n and n is the size of the array. Increase the size of the

a]]Et!,.l, S.hlft 1||.]. l]“: ElEIJlE[lT.S star Ellilg iIUIIl FIGSITIDII I Bllﬂ [ISGIE ¢ clement

IProhlem 2-8: Given two arrays of same sizes wi i arrang
in ascending orders, Create third amray that will :n]::tdaalf tfll: ljf;"'ﬂf the ﬁ;d
two arrays andlthc data will be armanged in ascending order. Condition: write
the program without using any sorting procedure, Hints: compare and m
{write) in third array without using any sorting procedure, -

roblem 2-9: write a program to find out th i
& summa
clements of a two-dimensional armay., S5y

~Problem 2-10: write a program to fi i i
- nd out the summatio
elements of a two-dimensional array. e W

Problem 2-11: There are 10 students in a course. They have written 4

quizzes for the course. Write a program 1o find out th
' & average
quizzes for each student of the course. ge of best three

e

CHAPTER THREE

RECORD

OBJECTIVES:
¥ Identify record
¥ Show data storing and accessing processes using record
» Write algorithms using record
¥ Differentiate the array and the record

RECORD

3.1 Definition

It is a collection of non-homogenous (different types of) related data items.
Each item of a record is called a field or attribute. Related data items of a
person may constitute a record. The following data items may constitute a

‘rcr:urd,
Data Items Types Length
Person's ID I,-' | Numeric & digits
Person's Name Character string 40 characters
Telephone No. Numeric 9 digits
Due Numeric & digits

Record in C/C++ is called structure. A structure can be defined as follows:

struct

{

int roll no;
char *name;
int marks:
}Student;

Here, “name™ is a pointer variable that points a character type variable (data

. ltem). If the length of “name™ field is 40, memory requirement for the above
ftructure (record) = 2 + 40 + 2 = 44 bytes; as each integer occupies 2 bytes
and each character is of 1 byte.

Drata Structures Fundamentals .

26

An array may be a member (field) of a structure (record). A structure
(record) may be an element (data item} of an array.

Example:
1},
struct
{
int roll_no;
char Name[40];
int marks;

}Stud; /' Here, Name[40] is an array which is a

member of the structure, Sed,

2
struct

{

int roll_no;

char Name[40];

int marks; .

1 Student [30];
Here, Student is an array of structures where members are roll_ne, Name[]
and marks, and Namef | is an array, '

We can assign value to the members of the structure (Stud) as follows:
Stud.roll_no = 5011;

Stud.name[] = “H.M. Mehedi Hasan™:
Stud.marks = 50;

If there is an array of structures, we can assign values to the members of the
structure (Strdent) as follows:

Student [2].roll_no=5011;
Student [2).name[] = “H.M. Mehedi Hasan™;
Student [2].marks = 50;

Il

L]

Wiy '_' -

27
Chap.-3 Record

Memory requirement for the structure, Student (in example 2):
(2 + 40 +2) = 30 bytes

= 44 = 3() bytes
= 1320 bytes

If we want to store data to a record (structure) for more than one person or
student or customer, then we have to declare (define) array of structures. But
disadvantage is that, for these types of array a huge amount of memory space

may be misused or wasted.

Define a record (structure) with three fields for a student and

Problem 3.1:

store data for 30 students.

Solution:

struct
{
int roll_no;
char name[40};
int marks;
} stud[30];
for (i = 0; i< 30; +hi)

{

store data in stud[i].roll_no;
for (j =0;] < 40; ++j}
store data in stud[i].name[j];
store data in stud[i] marks;
} f For storing data we can use seanf'() function of C/CH+

A data stmﬁ:mm may be the member of another data structure also.

Cade for problem 3.1 in C/C++ is as follows:

struct
{

int roll_no;

Data Structures Fundamentals
28

char name [40];
int marks;

1 stud[30];
for (i =0; i < 30 i)

{
scant ("%d", &stud [i].roll_no;
fMlash{stdin);
eets(stud[i].name);
scanf{"%d", &stud[i].marks):

t
To display data we can write code using printf();

Pointer to the structy re:
We can store data using pointer

to a structure (record). An example ys;
C-++ code is as follows: i R
struct stud

{ |
int roll: L i
int marks;]
'
f‘ aptr
struct stud * sptr;
spir = new{stud);
cin== sptr —roll;
COUt>>spir —=» marks;
COUt=<splr —» rol:
cout=<-< sptr — marks;
In the above code spir is the pointer to the stricter named stud and new is a
keyword for allocation memaory (space) for the structure.

3.2 Difference between an array and a record
1. i ite
.ﬁm array 18 a finite set of same type of data elements. In other words, it
) : 5
ES a collection of homogeneous data items (elements), Whereas a record
15 a collection of non-ho enous (dliffe
| e mogenous (different types of) related data

4

S

Chap.-3 Record 29

2 The data items of an array are of same type. But in a record, data
elements are usually of different types.

‘ Summary: ‘ .
Record is a collection of non-homogencous related data items. It

has different fields or attributes. :
) The basic difference between array and, record is that, an array 15 a

get of same types of data but a record is a set of different types of data items.

Questions:.
1. Define record (structure) with example.

What is the difference between array and record?

2
3. Define array and record.
4. Assume an integer needs four byte, a real number needs eight byte and

character needs one byte. Assume the following declaration:
struct Ku {
char name[10];
int roll;
} ece[30];
If the starting address of ece is 100, what is the address of ece[15]7
Consider the following C program segment:
struct xf
int sub [3];
char name [10];
long int roll;

H
struct vi

struct x person;
char addres[20];
} m[20];

If the address of the m[0].person.sub[2] is 500, then what will be the

address of m[10].person.sub[2]?

Data Structures Fundamentals

Problems for Practical {Lab) Class

Structure or record related problems
Problem 3-1: Given three attributes of student record such as roll, name and

marks. Write a program using structure to store data for Jive students and
display the data on the screen.

30

Problem 3-2: use the program for the problem 3-1 and modify it to
calculate grade for each student and display roll, name, marks and grade

using one row for each student. Use grade calculation rules of your
university,

Sample output:
Roll

Name marks Grade
1 Abdur Rahim 86 A
2 Shameem Rahman o5 At

Problem 3-3: Given three atiributes of employee record such as ID, name

and basic pay. Write a program using structure to store data for 5 persons
(employees), calculate some benefits as follows:

i) Mouse rent:
a) House rent = 45 % of basic pay (for basic pay equals to 10000 or
less) ;
b) House rent = 40 % of basic pay (for basic pay mare than 10000 or
less than equals to 200000
¢} House rent = 35 % of basic pay (for basic pay more than 20000
i) Transport allowance = 5 % of hasic pay
iii) Medical allowance = 2000/~ {fixed)
v} PF deduction = 10 % of basic pay.
v) Gross pay = Basic pay + house rent + Transport allowance + Medical
allowance
vi) Net pay = Gross pay — basic pay

Display the data as follows:

1D Name Basic pay Gross pay Deduction Net pay
0908 M Karim 12000 190400 1200 18200
0910 A Mazid 23000 35350 2300 33050

Problem 3-4: Declare a structure with two attributes | fields) such as roll,
name and marks, Declare a pointer variable of structure type (pointer to the
structure) and store and display the data using the pointer and attributes,
Hints: see pointer to the structure {page 28),

Fl

CHAPTER FOUR

LINKED LIST

OBJECTIVES:

Identify Linked list and Doubly Linked List _
¥ Describe the creation process of a linear linked list and Doubly
linked list . :
¥ Write an algorithm to create a linked list and Doubly linked list
¥ Write an algorithm to locate a node of linked list and Doubly
linked list 3 . . ;
% Describe the insertion process of a node inte a linked list and
Droubly linked list . .
¥ Write an algorithm to insert a node into a linked list and Doubly
linked list 24 b
% Desoribe the deletion process of node from a linked list and
Doubly linked list . :
¥ Write an algorithm to delete a node from a linked list and

Doubly linked list i : s
¥ Write an algorithm to armange data of linked list and Doubly
linked list
i i linked list
¥ Differentiate the array and the dl.zm cpw_ <
o i vy
— . p
LINKED LIST [=
4.1 Definition = e ‘ﬂch

It is a list or collection of data items that can be stored i:j'scariwred locations
(positions) in memory. To store data in scattered locations in ml:mllnry we
have to make link between one data item to another. So, ca_::h rdata 1te:m or
glement must have two parts: one is data part and another is link {pumtj::r]
part. Each dﬁl‘.a item of a linked list is called a nulde, Data part cunlam!;
(holds) actual data (information) and the link part pmnlsgﬂ_,die next node :l:

the list. To locate the list an external pointer is used that points the ﬁm. no : =
of the list. The link part of the last node will not point a:ll:.r nudf:. So, 1_l will
be mull, This type of list is called linear (one way) linked list or simply linked

list.

Data Structures Fundamentals

32

Data Pn:jf Link (Painter) Mart

100 |

Figure-4.1 (a): A single node

List [Exterral Pointer Last node does notpoint any
node, thesefore it is null

70 |4 B0 e 90 (e 95 e 10

J' Painter that points /)

¢ the next node

Figure- 4.1(b): Graphical representation of a linear linked list
4.1.1 Node declaration and store data in a node (in C/C++)

1. Node Declaration:
struct(node
i
int data;
“node *next;
L
2. Data store; !
node *nptr; f{declare nptr as node type-
nptr—data =20; /store 20 in data part
nptr—next= NULL; //void the pointer part

20° 13
Fope

At

L

Chap.-4 Linked List 33

4.1,2 Create a new node
1. Node declaration:
struct node
{
int data;
node *next;

h

2. Declare variables (pointer type) that point to the node:
node *nptr;
3. Allocate memory for new node:
nptr = new (node);
4, Insert node value:
nptr—data = 55;
nptr—next = NULL;

4.1.3 Create a linked list .

To create a linked list at first we have to create an empty list. That means,
the external pointer to the list will point no node or the extemal pointer will
be null. After that, we have to create a new node. The data part of the new
node will contain data (information) and the pointer part will contain null.
This temporary pointer will help us to include the next new node to the list.
Now we shall include this new node to the existing linked list. A temporary
pointer will be used to point (trace) the new node. Thus we establish a link
between the existing linked list and the new node. At this point there is only
one node in the linked list. We shall create another new node and include the
node to the linked list. We shall repeat the process to include any other node.
Thus we can create a linked list.

We can create a linked list according to the following process given in

points.

1. Create an empty linked list.
(The external pointer will be meif).
2. Create & new node with necessary data.

Data Structures Fundamentals

{The data part of the new node will contain data {information and the
pointer part will contain mdl).

3. The extemnal pointer will point the new node. :
{ At this moment there is only one node in the list)

4. Create another new node and include the node to the linked list.

5. Repeat and process to include any other node.

Linked list creation process using pseudo code:

1. Create an empty list, the pointer list will point to nedi:

list=Mull; 7
list E

2} Create a new node with data:
npt = new (node);

40

nptr-> data = item;
npir ->next = NULL,; \
{Here the value of item is 40). NPT
3) Include the first node o the list

list \\‘l
40

list = nptr;
rt = nptr; .\
L3 P nptr

Here tptr is temporary pointer used to make link between existing list and
new node.
4} Create another node with data and include the node to themlist:

list \\
40 * 48
3 r\
I
I
i
T.p'tr nptr

tpir -= next = npir;
tptr=nptr;

el

35

Chap.-4 Linked List
1 List
40 [~
[
4B " gtptr—vncutr—' npir;
' H
t‘“’ ol 9

2 List

% i ¥

v

\«' 59 |\ | . tptr = nptr;

"tpn’n;n i

f Figure-4.2: Addition of nodes to a linked list (picforial view}.

Algorithm 4.1: Algorithm (pseudo code) to create a linked list

Forma—4

1. Declare node and pointers (list, tptr, nptr): £
i. struct node P
{
int data;
node *next;
H
ii. node *list, *tptr, *nptr;
2. Create an empty list:
list = NULL;
3. Create a new node:
nptr = new (node};
nptr—data = item;
nptr—next = NULL;: pemacisll . s
4, Make link between the linked list and the new node:
if (list==NULL) Butefl oy vt
{

Data Structures Fundamentals 36

list = nptr; ;

| tptr = nptr;
}

clse {

tpir—next = nptr;
tptr = nptr;
}

5. Output linked list

Note: Step 3 and 4 will be repeated again and again if two or more nodes are
to be added in the list.

Comments: Here, nptr is a pointer that poinis to a new node. The tptr is the
pointer that points the last node, which has been already added. item is a
variable using which we shall enter data to the new node.

Program to create a linked list:
Although we have written linked list creation process in detail, however,

there are some students they face problem to write a program 1o create a
linked list. So, here we write a program to create a linked list (header files
are not included). After creating a lined list we have to read the data of the
linked list and display them on the monitor. Otherwise we cannot understand
whether the list is created properly. At the end of the program we include
code to display data of the list.
void main{)
struct node

{
int data;
node *next;

b
int i,n,item;
nede *nptr, *tpir, *list; // Necessary pointers
list=NULL; /f Create an empty list
cout<<"Enter number of ﬁudes:";

Chap.-4 Linked List

37

in>>n;
gout<<"Enter data for node with space:™;
for (i=l;i<=n;++i)
{
cin=>item;
nptr = new (node);
npir-‘-'*ﬂata = jtem;
npir->next=NULL;
if {list=—=NULL) //List is empty
{
list = nptr; //Include first node
tptr = nptr;
}

. HThere isfare node(s)

else

{
tptr->next = nptr;
tptr = nptr;

)

}/fend of for loop

{fDisplay data

tptr = list;

for (i=1; i <=n; +H)
{ :
gout<<endl;
gout<<tptr->data;
Iptr = tptr->next;
ﬂlﬂ":‘: !III;

)

cout<<endl;
cout<<endl;

|

Data Structures Fundamentals kt]

4.1.4 Locate or search a node of a linked list
Here, we have to find out a node whose value is known,

List

\

20 | 45 |- 51 |9 84

Problem 4.1: Find out the item 51 from above linked list. All items in the

list were stored in ascending order.

Solution: To locate the node we have to traverse the list using a pointer,
Here, we shall use a temporary pointer using which we shall find the node.

We can write in points:
a) We have to use a temporary pointer to traverse the list

b) At each node we compare and check whether we have found the node or
not.

list &

20 | =™ 45 51

/ tptr->data = 517

totr
list

N

20 | +—» 45

.

A

L J

84 |/

¥

51| +——» 84 |/

tptr = tptr->next;

Chap.-4 Linked List 39

Algorithm 4.2: Algorithm (pseudo code) to search a node from a linked list

1. Declare node and tptr
2. Input the value to be located:

item = 51;
3. Search the item:
tptr = list;
while (tptr—data != item or tptr! = NULL)
", .
tptr = tptr—next;
) .
4. Output:
if (tptr—rdata’= item}
print “FOUND™

else print “NOT FOUND”

Note: Here, list is an extenal pointer that points to the first node of the
list and tpir is a temporary pointer and item is a variable that contains the
node value to be located.

4.1.5 Insert a node into a list ' d
Here, we shall consider the insertion of a node after the first node or before

the last node and the data of the list are arranged in ascending order.

To insert a (new) node into a linked list, we have to find out (locate) the
position of the node after which the new node will be inserted. To find out
the position we shall use a temporary pointer. As we know there is an
external pointer to the linked list, which points the first node of the list. So,
we shall assign the value of the external pointer to the temporary pointer. At
the first stage temporary pointer will point the first node of the linked list.
Now we shall compare the data of the second node of the list with the data of
the new node. If the data of the second node of the list is greater than the
data of the new node, then we have found the pesition for insertion. So, the
new node will be inserted after the first node (before the second node). If the
data of the second node is smaller than the data of the new node, then we

Data Structures Fundamentals 40

advance the temporary pointer. That is, at this stage the temporary pointer
will point the second node of the list. Then we shall compare the data of the
new node with the data of third node. If the data of the new node is smaller
than the data of the third node, the new node will be inserted after the second
node or before the third node. If not, we have to advance further.

List

FE TS T =N

(a) An existing Linked list {b) A new Mode

(4“ Appropriate position for new node

ST B b B

{c) Finding out appropriate position for the new node

To insert a node in between two nodes we have to perform two major tasks:
i) To locate (find out) the node after which the new node will be inserted.
ii} To perform insertion of making necessary link.

To locale the position for insertion we have to perform the following
operations:
i) Use a temporary pointer (tptr) to the first node of the list (tptr = List).
ii) Compare the value of the next node with value of the new node
iii) Traverse the temporary pointer until we find a greater node value than the
value of the new node. (tptr = tptr > next).
To insert the node by making link the steps are:
i) Point the next node by pointer of the new mode (nptr -> next = tpir->next)
ii) Point the new mode by previous node of the new node.

tptr->next= npir

Chap.4 Linked List 4

Figure-4.3 gives a clear pictorial view of insertion of a new node in an
existing linked list.

(o [} LB

r
i
i
1
]
,

pa » 55 | '
nptr
Graphical View
Lisc
Y

. 3O
w 55 |3 -
1. nptr->next = tptr->-next;
nptf 2. tpir->next = nptr;
{d) Making link between the new node
List and the node following e

59 |4l 63

Ty &

Lss,

nptr
(z) Making link between tptr and the new
List node
40 | Lp| 48 | lp| 55 59 |1 63
(f): Updared List

" Figure-4.3: New node insertion in an existing list (pictorial view)

T —

Data Structures Fundamentals 42

Algorithm 4.3: Algorithm (pseudo code) to insert a node into a linked list
[Here, we shall consider insertion after the first node or before the last node
in an ascending list]
1. Declare node and pointers (list, tptr, nptr)
2. Input linked list (we have to use an existing list)
3. Create a new node:
nptr = new (node);
nptr—data = item;
nptr—next = NULL;
4. Locate the appropriate position for the new node:
[for making link between linked list and T.he new node]
tptr = list;
while {tptr—next—data < npu‘—hda_ta]
. tptr = tptr—next;
}

5. Insert new node at appropriate position {by linking previous and
next node):

npir—next = tptr—next;
ptr—next = nptr;
6. Updated linked list
Comments: Here, list is an external pointer that paints to the first node of
the list and tp¢r is a temporary pointer. npir is the pointer to the new node.

Addition of a node before the first node of a linked list is very easy. At first
create 4 new node, Make link between the new node and the first node of the

list. Now remove the external pointer and set it to the new node (the external
pointer will point the new node).

Similarly we can add a node at the end of a linked list. To perform this task
we have to use a temporary point and traverse it to the last node (whose

pointer part is null) of the list. Now make link between the last node of the
list and the new node,

43
Chap.-4 Linked List LSS

T.ist

-

T .=t

=a v¥]

];u |J®-"l 43 . '

f {new node)}
nptr - y

1. nptr == next =list;
2. list = nptr;

i) Addition of a new before the first node (pictorial view).

H 55 i—»l 59 I\}" 63

nptr (new nn-de]

np

List

Jiantes

1. tplr—}nmtl_l'lPTl‘

ii) Addition of a new after the last node {plctuna.l view).

4.1.6 Deletion of a particular node
To delete a particular node from a linked list, first we have to find out the

node to be deleted. Then we shall delete the node by making link between
the previous nodes and the next nodes of the node (that will be deleted). To
find out the node to be deleted, we start searching from the first node. Hf:m
we need a temporary pointer (tptr) to point the current node. At the starting
of the searching, the temporary pointer will point the first node (i.e, tptr =
list).

If the first node is the node we want to delete, then the searching process is
completed. If we are not looking for the first node, we have to advance to the
second node of the list and compare it with the node value to be dr.:lcted.
Again if this node is our target node, then searching will be tcrmmalted.
Otherwise, we have to advance more. In this way, we have to continue
searching through the whole list until we find the target node. If the target
node is not present in the list, we shall simply close our mission.

Data Structures Fundamentals 44

In the second phase, when we have already found the target node and the
node is indicated by the temporary pointer (tptr), we have to delete the node.
But deleting this node we shall loose the rest part of the list (if there is any
node after the node to be deleted). So we have to confirm that. The next
nodes of the list will not be lost, if we make link between the previous node
of the target node and the next node of the target node. To make this we
require a second temporary pointer (pptr) that will point the previous node
of target node,
Now, we shall make link between the previous node and the next node of the
target node (the node to be deleted). That is we have to assign the value of
next pointer of the previous node to the value of the next pointer of the node
to be deleted. Now the link is established and we are free to delete the target
node, !
If the target node is the first node of the list, we have to advance the external
pointer of the list to the next node (second node). Then we delete the target
node {i.e., the first node).
If the target node is the last node of the list, we have to assign NULL to the
next pointer of the previous node of the target node. Then we delete the
node,

List

o [« (= o5 P N
(2} An existing Linked lise

Mode thar i o be dedeted
i o
[o [1» & |14 = = Y
= J

pptE rpd;’r

(b) Searching the meger clemene 1

muking link berween previous and
S, next pixle of the node o be delesed
(ppor->nex=tptr->next);

pote e =B 2 deleting the ranger node
{e) Dieleting the rarger pode delete {rper)
[Ju‘
(o s w o =N

() Updated List

Figure-4.4: Deletion of an item from a linked list (pictonial view)

Chap.~4 Linked List 45

Problem 4.2: Delete a particular node from a given linked list.

Algorithm 4.4: Algorithm (pseudo code) to delete a node from a linked list
(Here we shall not consider the deletion process of the first node and the last
node of the list).
1. Declare node and pointers (list, tptr, pptr)
2. Input linked list and the item (that is to be deleted)
3. Search the item to be deleted in the list:
tptr = list; ,
while (tptr—data != item)
{ppir = tptr;
tptr = tptr—snext; }
4, Delete the node:
[Make link between previous and next node of the node
that is to be deleted and delete the target node]
pptr—next = tptr—next; i
delete (tptr);
5. Qutput: updated linked lists

e T

Comments: Here, list is a pointer to the linked list and tptr is a pointer that
will point the node to be deleted. And pptr is a pointer that will point the
previous node of the target node (the node is to be deleted) and item is the
node value to be deleted. ;

Problem 4.3: Given a linked list, where the data of the nodes are not
arranged in an order. Arrange the data of the linked list in ascending order.

Algorithm 4.5: Algorithm (pseudo code) to arrange data of linked list
1. Input linked list.
2. Take extra pointers ppir, fptr.
3. pptr = list;
4. while (pptr 1= NULL)
{

fptr = pptr—next;

Data Structures Fundamentals 46

5. while (fptr 1= NULL)

{
if (pptr—data > fptr—data)

interchange (pptr—data, fptr—data);
3 .
fptr = fptr—rnext;
} fend of while of step-5
Pptr = pptr—next; :
} flend of while of step-4
6. Output: The arranged (sorted) list. -

Comments: /ist is the pointer to the first of the linked list. pptr and fper are
the pointers to first and second nodes, and three pointers will be used to
arrange (sort) data.

4.2 Doubly linked list

4.2.1 Definition . :

A doubly or two way linked list is a list where each node has three parts.
One is link or pointer to the previous (backward) node and one is data part to
hold the data and another is link or pointer to the following (forward) node.
There is an external pointer to the first node of the list. Doubly linked list is
also called two-way linked list,

967

list
il 135 TR 1o [T 307 [TPL] 15

it

Figure-4.5: Graphical representation of a doubly linked list

e ———————- . e A ——

Chap.4 Linked List e L

4,2.2 Declare a node of a doubly linked list

struct node
i
node *back;
it datg; .
. node *next; .
b
4.2.3 Create a node r
struct node
{ =
node *bﬁu}q
int data;’ "
node *next;
7
node *nptr;
nptr = new (node);
“nptr—back = NULL;
nptr—data = item;

nptr—next = NULL;

4.2.4 Create a doubly linked list : : :

To create a doubly linked list, we have to create an empty linked list first.
Then we shall create a new node with data and include the node to the list.
After that, we shall create another new node with data and include this flﬁ!d{: :
(o the list. To include a new node we have to make link between the last
node of the list and the new node. To make link, the next pointer of the last
node will point the new node and the back pointer of the new node will point
the last node of the list. Thus we can create a doubly linked list. The pictorial
view of this creation process is shown in Figure 4.6.

Data Structures Fundamentals

48
List List
[T
list bt L L E 1
npir ; s IR , newnode |
125 "—_F [256 :-_------...-_:
X wpa N
tper
(2) A doubly linked list and new node
= = i T e N R,
5 Lﬂ_fﬁ EEl_nfe_r_c:f_ lgst nodc] ' back pointer of new node -
l i +
T [s | §o]
tptr oy
(b) Linking the last node of the list and the new node
Hise
ﬁl 128 T 596 d_ 256

_ Pl
e
(¢) Doubly linked list after making link
Figure-4.6: Creation of doubly linked list (pictorial view)

Algorithm 4.6: Algorithm (pseudo code) to create a doubly linked list
L. Declare node and pointers:

a. struct node
{
node *back;
int data;
node *next;

}
b. node *list, *tptr;

* Chap.-4 Linked List 49

2, Create an empty list:
list=NULL;
3. Create a new node:
node *nptr;
nptr = new (node);
nptr—back = NULL,;
nptr—data = item;
nptr—next = NULL,;
4. Make link between the last node of the list and the new node:
if (list=NULL)
{
list = nptr;
tptr = nptr,
}
else . |
tptr—snext = nptr;
nptr—sback = tptr;
tptr = nptr;
}
5. Output a doubly linked list.

- Note: To create several nodes we have to repeat the step 3 and the step 4.

4,25 Insertion of a node into a doubly linked list

To insert a (new) node into a doubly linked list, we have to find out the
position in the list where the new node will be inserted. To point this node
We need a temporary pointer (tptr). We have to start searching from the first .
‘Node of the list. To performing searching we set the temporary pointer to
point the first node. Let us consider that the data will be placed in an
nscending order. If the node value is smaller than or equal to the value of the
first node, searching ends. Now we have to insert the node before the first
node. ;

Data Structures Fundamentals ; v 50

If the new node value is greater than the first node, we have to advance the
temporary pointer (tptr) to the next node. Now, if the new node value is
smaller than the current {(second) node, the new node will be inserted before
the current node. If new node value is still greater, advance the temporary
pointer to the next node. This process will continue until either we find the
node after which we shall insert the new node or we reach the last node of
the list. :

Mow, when we have completed searching the position, we shall make link
among the node after which the new node will be positioned (inserted), the
node before which the node will be inserted and the new node itself. That
means, as the list is a two way linked list, generally insertion takes place
between two nodes; previous node and the next node (of the new node to be
added). First, we have to make link between the node after which the new
node will be inserted and the new node. Then we shall make link between
the new node and the node before which the node will be inserted. After
making links, insertion process terminates.

If the node is to be inserted before the first node, we have to make link
between the new noede and the first node. New node will be placed at the
very first of the list and then link has to be made between the new node and
the first node of the list. Afier that, we have to set list pointer (list) to point
the new node. If the node is to be added at the end of the list, we have to
make link between the last node and new node in such 2 manner that the new
node will be added at the end of the last node (after the last node).

list
[[:20]] %m [80] o= 300 L= e [

Tnptr

list

ENORO R) I P B) e N LT B e R Y

-
£
1

a:,,'@ tpir .+ l.nptr->next = tptr;
2. tptr->back = nptr;
3. list = nptr;

nptr
i} Additional of a new node before the first node (pictorial view)

*

Cl

5
iap.-4 Linked List

T ™

list

1}201_1‘:"[Ti2s] L [180] Je—] [210]}]
tptr

[—I\llﬂﬂl puma l EE5) mﬁn‘rﬂ/ﬁﬁ}‘k}_m

-

{(new node)

lis

1. nptr->next = tptr;

nptr
2.tptr-=back = npir; P

ii) Addition of a new node after the last node (pictorial view).

lirl& :
s Tl w el = Hel = TN
. (=]

nptr 35
{a) A doubly linked lst and 2 new node at initial stage

liat
5 [l m el T R = N
~
:

il i ing Lk
(b} Doubly linked list and new node just before making

s el |-, - o TR [l
o ' |

o o
oy

npte .
{€) Doubly linked Hst and new node after making lnk

Figure-4.7: Insertion of a node into 2 doubly linked list (pictorial view)

Forma-3

Data Structures Fundamentals

5

Alpgorithm 4.7; Algori
A gorithm (pseudo code) to add anew node before the first

1. Input a doubly linked list
2. Declare necessary pointer (list, nptr, tpir)
3. Create a new node:
nptr = new(node);
npir->=data = x;
nptr->next = NULL;
nptr-=back = NULL;
4. tpir= list;
3. Make Necessary link:
nptr->next = tptr;
tptr—>back = nptr;
6. Move pointer (list) to the new node:
list = nptr;
7. output updated linked list

"

e rithm 4.8: Algorithm (pseudo code) to insert a node in between two
exiting nodes

1. Input a doubly linked list.
2. Declare necessary pointers (list, tptr, .nptr}
3. Create a new node:
nptr = new (node);
nptr->data = x;
nptr->next=NULL;
npir->back = NULL:
4. Locate (search) the position the new node:
tptr = list;
while (tptr->next->data < nptr->data)
{ £
Iptr = tptr->next
}
3. Make necessary links:
nptr->next = tpir->next;
npir-=back = tptr;
tptr->next = nptr;
7. Output updated Hnked list,

Chop.-4 Linked List 53

Comments: to check whether the doubly linked list has been updated
properly or not. We have to print the data of the list in input order as well as

reverse order.

Algorithm 4.9: Algorithm (pseudo code) to add a node at the end (after the
last node) of the list.
1. Inputa doubly linked list
2. Declare necessary pointer (list, nptr, tptr)
3. Create a new node:

nptr = new (node)

nptr->data = x;

nptr->next = NULL;

nptr->back = NULL;
4, Locate the last node of the list:

tptr = list;

while (tptr-=>next }=NULL)

v : :
tptr=bisw-£ph 72— nesd;
H : '
5. Make necessary links:
fpir-=next = nptr;
npir->back = tptr;
6. Output updated linked list.

After |.1|:uiatin.;-:|-r the doubly linked list, we have to print the data of the list in
Input order as well as reverse order. If we find correct print out of input
order and reverse order, we make sure that updated (addition) has been done

properly.

4.2.6 Deletion of a node from 2 doubly link list

To delete a node from a doubly linked list, at first we have to find out the
node to be deleted. For this, we shall use a temporary pointer to point the
node. When the temporary pointer points the node to be deleted, before
deleting the node we have to make link between the previous node and the

Data Structures Fundamentals 54

next node of the node (to be q::]ated]. To do this, the next pointer of the
previous node will point the next node and the back pointer of the next node
will point the previous node of the node. After establishing the link we shall

delete the target node. The pictorial view of the deletion process is shown in
Figurc 4.8,

t@ﬂﬁ%‘ilﬁl us [o [5 N

(2) Doubly linked list at ininal stage

T oo [o5 1Y
per -7
{b) Doubly linked list just before deletion of a node fwith value 148)

list P Ll s
V% Tl 5 [T el

P "o
(c) Doubly linked list after making link and before deletion of the nade

ngs [72t] s [F¥4] 0 [f@f[s

{d) Uipdated doubly linked fist after deletion of tagget node
Figure-4.8: Deletion of a node from a doubly linked list (pictorial view)

Algorithm 4.10: Algorithm (pscudo code) to delete a node from a doubly
linked list

1. Declare node and pointers (list; tptr);

2. Input a doubly link list and item (value of the node to be deleted);
3. Locate the node to be deleted:
tptr = list;

while (tptr—next != NIJLL)
{
if (tptr—data = = item) break;
tptr = tptr—next;
}

Chap.-4 Linked List 55

4. Make link among rest of the nodes (excluding the node to be deleted):
a. If the node to be deleted is the first node of the list:
list = tptr—next;
list—back = NULL;
[if there is only one node in the list then list= NULL]
b. If the node to be deleted is not the last node:
tptr—back—next = tptr—next;
tptr—next—back = tptr—back;
c. If the node to be deleted is the last node:
tptr—back—next = NULL;
5. Delete the target node:
delete (tptr);
6. Output: Updated doubly linked list.

4.3 XOR linked list

An XOR linked list is a linked list that uses the bitwise exclusive disjunction
1o decrease memory requirements. XOR linked lists were quite common in
the early days of computers, when the available memory was quite sparse.

Priﬁt:iple

The principle used by XOR linked list is quite interesting. XOR linked lists
are doubly-linked lists, but unlike traditional linked list, their nodes use only
one pointer to obtain the predecessor and the successor. In order to do this,
each node contains a pointer that stores the birwise XOR of the previous and
next field. Traversing the list from the beginning to the end is easy. For a
given item A (n), XORing the address of A (n-1) and the address of A (n)
will give you the address of A (n+1). The same procedure can be applied for
the other direction. Starting the process of traversing the list is done using
the address of two consecutive nodes, by XORing the addresses they store in
order to obtain the one of the starting point.

An ordinary doubly-linked list stores addresses of the previous and next list
items in each list node, requiring two address fields:

Data Structures Fundamentals 56

w A B C D R
—* next —> next —> next —>
= prev <— prev <— prey <—

An XOR linked list compresses the same information into one address field

by storing the bitwise XOR of the address for previous and the address for
next in one field:

o A B C D E;..
<= Aa(<->BeD<>C8E <>

When you traverse the list from left 1o night: supposing you are at C, you can
take the address of the previous item, B, and XOR it with the value in the
link field (BeD). You will then have the address for D and you can continue
traversing the list. The same pattern applies in the other direction.

To start traversing the list in either direction from some point, you need the
address of two consecutive items, not just one. If the addresses of the two
consecutive items are reversed, you will end up traversing the list in the
opposite direction,

Features

* Given only one list item, one cannot immediately obtain the addresses

of the other elements of the list,

Two XOR operations suffice to do the traversal from one item to the
next, the same instructions sufficing in both cases. Consider a Jist with
ittems {..B C D...} and with R] and R2 being registers containing,
respectively, the address of the current (say C) list item and a work
register containing the XOR of the current address with the previous
address (say C2D), Cast as System/360 instructions:

X R2Link R2<-CeDe Bep (i.e. BeC, "Link" being the link field
in the current record, containing Be[)
XRRLR2 RI<-CeBeC (i.e. B, the next record)

Chap.-4 Linked List 2

* End of list is signified by imagining a list item at address zero placed
adjacent to an end point, as in {0 A B C...}. The link field at A would
be 02B. An additional instruction is needed in the above sequence
after the two XOR operations to detect a zero result in developing the
address of the current item,

* A list end point can be made reflective by making the link pointer be
zero. A zero pointer is a mirror. (The XOR of the left and right
neighbor addresses, being the same, is zero.)

Why does it work?
The key is the first operation, and the properties of XOR:

* Xox=0

* Xo0=X
I * Xay=YeaX

* (XoY)sZ=Xe(YeZ)
The R2 register always contains the XOR of the address of current item C
with the address of the predecessor item P: CsP. The Link fields in the
fecords contain the XOR of the left and right successor addresses, say LeR.

- XOR of R2 (CeP) with the current link field (L=R) yields CePaLaR,

* If the predecessor was L, the P(=L) and L cancel out leaving C=R,

* If the predecessor had been R, the P(=R) and R cancel, leaving CSL.
In each case, the result is the XOR of the current address with the next
ddress. XOR of this with the current address in R1 leaves the next address.
R2 is left with the requisite XOR pair of the (now) current address and the
predecessor,
Use
Although XOR linked lists were heavily used a few decades ago, their usage
I8 now discouraged unless it is absolutely necessary. It is generally used only
for embedded devices and microcontrollers, because they do have a number
of disadvaniages:

_j+-

Drata Structures Fundamentals 3%

* Most debugpers cannot follow the structure of such a list, making
programs very hard to debug, The code required to use XOR lists is
quite complex, too. '

* Many high level languages do not support the XORing of pointers
directly oratall, : .

¢ The pointers are not available if the list is not actually traversed

= Conservative garbape collection schemes cannot be used, «ince they
need literal poiriters to work. Implementing a special garbage
collector is not practical o low-memory devices. '

* Modem computer architectures have no use for such lists, since
they do have enough memory. Unrolling is generally a better choice
for programmers looking to decrease the overhead.

*-4.4 Civeular linked list
A circular linked list is a list where each node has two parts; one is data part
to hold the data and another is link or pointer part that points the next node
and the last node’s pointer points the first node of the list. Like other linked
list there is an external painter to the list to point the first node,

Ligr /.\.._

Figure-4.9: Pictonial view of a circular linked list (a circular diagram)
List

40 '_’F 48 | 59 » 59 63
7 3

S iy

Figure-4.10: A circular linked list {linear diagram)

50
Chap.-4 Linked List

4.4.1 Create a circular linked list .)
Creation process of a circular linked list is similar to the creation process of a

linear link list, which had been discussed in section 4.1.4. Here we have to
~ do addition thing, that is make link between the last node and the first node

which will create a cirele (linked list as a circle).

List

(£ A circular linked fist
with one node

(i) Ancwande (40 Making ink

() An empry lise

Figure-4.11: Linking process of the first node of a circular linked list

List
o [N e Dy
s nptr i

-

3. Forward tpir

(i) A pew node (£ Making link berween lnst node &

A circulae ligt with
i new node, new node & fiest node.

one node

tpir

() Updated eirealer baked list after
making link.

Figure-4.12: Creation of a circular linked list with more than one node

Algorithm 4.11: Algorithm to create a circular linked list
1. Declare node and pointers (list, tptr, nptr)
2, Create an empty inked list

list = NULL;

Drata Structures Fundamentals
it}

3. Create a new node with data: -
nptr = new (node);
nptr—+data = item;
nptr—next = NULL;

4. Make link between new node and the link list:

if (list = NULL)
{
list = nptr;
nptr—next = list; //for circular linking
tptr = nptr;
¥

) ;

else {

tptr—next = nptr;
nptr—next = list /for circular linking
tptr = nptr;

i

3. Output a circular linked list.

Note: To create a circular li i i
nked list with several nodes w
step 3 and step 4. e

4.5 Difference between array and linked list

l. An aray is a finite set of same type of data items (clements). In other
words, it is a collection of homogencous data items. The elemc;nts of an
?me are stored in successive memory locations. Any element of an arra
15 referred by array name and index number (subscript). i

Whereas, linked list is a list or collection of data items stored in scattered
memory locations. Each data item has two parts. One is data part and
another is link (pointer) part. Each data item of a linked list is called
node. Data part holds actual data (information) and the link part points to
the next node of the list. To locate the list or the 1™ node of the list, an

external pointer is used. The link i '
j part of the last node will not poi
node. That means it will be null. e

J

Chap.-4 Linked List 6l

2. Armay implementation depends on size and it results in wastage of
memory space. On the other hand, linked list does not depend on size.

'), Types of array are one dimensional, two dimensional etc. and types of

linked list are linear, doubly, circular ete.
4. An element of an amay can be accessed directly and access time is fixed
as well as efficient. On the other hand, a node of a linked list can not be
accessed directly and access time is linear and not so efficient.

&, Array is a static data structure and a linked list is a dynamic data

structure.

4.6 Comparisﬁn of operations using array and linked list.

‘ Array Linked list

Element access is fast if index is | Element access is slow.

known. msl
Insertion and deletion operations are | Insertion and deletion operati
slow. : are fast.

Element search is slow.

Element search is slow.

‘Summary:
Linked list can be defined as a collection of data itemns that can be

II::rtr:d in scattered memory locations. Here, the data items must be linked
with each other. Data items are known as nodes here. We can create nodes,
create linked lists, search a node of a linked list, insert a node into a list and

- delete a node from the list. J

A linear linked list is a list where there is only one way link
between nodes. A doubly linked list is a list where there are links in both

' directions between the nodes. A circular linkd list is a list where the last
node has a pointer which points to the first node. Each type of linked list
Iruquin:s an external pointer to point the first node of the list
- There are some differences between an array and a linked list such
#s armay implementation depends on size but linked list implementation 1s
independent of size. Array is a static data structure whereas linked list is a

dynamic data structure etc.

Data Structures Fundamentals 62
Questions: g

1. What is linear linked list 9 Explain with example(s).

2. Describe the creation process of a linked list,

3. How a node can be inserted into a linked list? Explain with example,

4. Write an algorithm to create a linear lined list.

3. Write an algorithm to insert a node at the beginning of a linked list.

6. Write an algorithm to insert a node into a linked list. The node will not

be first not er the last node,

Write an algorithm to delete & node from a linear linked list.

8. Write the algorithm to implement a sorted linked list int;:- which
elements can only be inserted into their proper positions.

9. Write a function, which will destroy a linked list,

10. “Insertion and deletion in linked ist is easier than array”, Explain.

11. What are the relative advantages and disadvantages of fixed length
storage structure and linked-list storage structure ?

12. When is linked-list more convenient than array ?

13. Define doubly linked list with example.

4. Write an algorithm to delete an item from a two-way list.

15. Write down an algorithm to insert and delete an element into a doubly
sorted linked list,

16. Write a function to swap two nodes for a doubly linked list.

7. Write an algorithm to find (locate} a node of a doubly linked list.

18. When will you use a doubly linked list 7 Why ?

19. What is circular linked list? Give example.

20. Write an algorithm to delete a node from a circular linked list.

21. Write an algorithm to insert a node into a circular linked list,

her.

Uhap.-4 Linked List 63

Proble; Practical (I.ab) Clas

Linked list related problems
Problem 4-1: Write a program to create a linked list of five nodes where
pich node of the list will contain an integer. Display the data of the list on
I8 screern.

blem 4-2: Convert your program of the problem 4-1 as follows:
Write a function for node creation, another for linkage and another function
it display the data. Call them to show the result of execution.

froblem 4-3: Write a program to insert-a node in between two cxisting
ides of a linked list. Display the data of the existing (old) linked list and the
ipdated linked list. ;

'roblem 4-4: Write a program for the followings:

i) Add a node before the first node of the list.

ii) Inset a node in between two existing nodes of the list.
iii) Add a node at the end of the list,

] isplay the data before addition and after addition or insertion of a node.
pnditions: Write a function for nodecreation, a function for addition and

nother function to display the data.

:-_ oblem 4-5: Write a program to delete a node from ‘in-between two
Kisting nodes of a linked list. Display the data before deletion and after

_: etion operation.

roblem 4-6: Write a program for the followings:

i) Delete the first node of the linked list.

ii} Delete the node from in-between two existing nodes.
iii} Delete the last node of the list.

Blsplay the data before and after the deletion.

onditions: write a function for creation, a function for deletion and
lother function to display the data.

lem 4-7: Given a linked list with data arranged in random order. Write
program to modify the linked list so that it contains data in ascending
Brder. Display the data before and after the modification.

Data Structures Fundamentals fd

Praoblem 4-8: Write a program to create a doubly linked list of five nodes
and display the data in input order as well as reverse order.

Problem 4-9: Write a program using doubly linked list for the followings:
1) Add a node before the first node.
ii) Insert a node in-between two existing nodes.
iii) Add a node at the end of the list.

Display the data in reverse order before and after the addition of a node.

Condition: write a function for creation, a function for node addition and
another function to display the data.

Problem 4-10: write a program to delete a node from in-between two
existing nodes of a doubly linked list. Display the data in input and reverse
orders before as well as after the deletion operation.

Problem 4-11: write a program in case of doubly linked list for the
followings:
i) Delete the first node of the list.
i) Delete a node from in-between two existing nodes.
iii) Delete the last node of the list.

Condition: write a function to create a list, a function for deletion operation
and a function to display the data in reverse order.

Problem 4-12: Given a doubly linked list: with integers arranged in
ascending order. Write a program to display the data in descending order
without using any sorting algorithm and/or stack.

1

CHAPTER FIVE

STACK

?ﬂBJEC'[‘I\r’ES:

1

Identify stack

Describe push operation on array based stack

Write an algorithm for push operation on array based stack
Describe pop operation on array based stack

Write an algorithm for pop operation on array based stack
Describe the creation process of a linked stack

Write algorithm to create a linked stack

Describe push operation on linked stack

Write an algorithm for push operation on linked stack
Describe pop operation on linked stack

Write an algorithm for pop operation on linked stack
Application of stack

YV VY Y Y YVYYYYYY

TACK

I Definition

our daily life we see stack (pile) of plates in cafeteria or restaurant, stack

f books in book-shop. Even a packet of papers is also a stack of paper-

fieet. A book is also a stack of written papers. When anybody takes a plate

fom a stack of plates, he takes it from the top. On the other hand, the person
0 cleans the plates, he puts it on the top of the stack.

is a linear list where any element is added at the top of the list and any
ent is deleted (accessed) from the top of the list. So, for stack an
icator or pointer must be used to indicate or point the fop element of the
k. Add opecration for a stack is called *push’ operation and deletion
ration is called ‘pop’ operation. Stack is a LIFO {Last In First Qut)
ture. That means the element which was added last will be deleted or
gssed first, '

Data Structures Fundamentals L4 Bt

The elements of a stack are added from bottom to top, means push operation
is performed from bottom to top. The elements are deleted from top to
bottom, which means pop operation is performed from top to bottom.

Stack can be implemented in two ways; using array and using linked list.

8
7

6

5 1923 “— top

4 1452 (top = 5)
3 2315

2 1245

1 1025

{a) An array based Stack

> 48

(bottom node)

L 4

59 |-r™ 59 63

40

?ﬁp
{b) A link based stack
Figure-5.1: Graphical representation of Stack

5.2 Array based stack

The stack, which is implemented using array is called array based stack. To
create an array based stack, at first we have to declare an array with required
size. y A i

% 5.2.1 Push Operation
Push operation means to add an element to a stack,
Here, we shall use array based stack, so, an array will be treated as a stack.
We need an indicator or index identifier to add element to the stack

s

!

E-Ehlp.vﬁ Stack

—

67

and this indicator will mark the top of the stack. To add an element we have
{0 check whether the array is already full or not. If the array is already full,
we can not add any element, otherwise we can.

Here, top is an indicator indicates the top element of the stack and item is an
glement to be added to the stack. M is the size of the stack (array). Overflow
\ecurs when we try to insert an element into the stack, which is already full.

6
5 H — top
4 D +— top D (top = 5)
i Q (top = 4) Q
2 F F
1 A A
(a): Before push (b): After push

Figure-5.2: Pictorial view of push operation

Algorithm 5.1: Algorithm to add an element to a stack
1. Declare the stack and top:
stack(1 . . . M], top;
2. Add an item in the stack:
if (top = M}
i
top = top +1;
stack [top] = item;
}
else print “Over Flow™;
3. Output will be the updated stack.

Forma-6

Data Structures Fundamentals 68

 Chap.-5 Stack L
5.2.2 Pop Operation
Pop operation means to delete (access) an element from a stack.
Here, top is an indicator indicates the fop element of the stack, M is the size F v | L
of the array and x is a variable where we access top element of the stack. 40 | T 48 < i] b g ad

Figure-5.4: A link based stack

+— top
(top = 5)

§.3.1 Create a link based stack _

To create a linked stack, we have to use a pointer to point the top element
{node) of the stack. We named this pointer as top. We create an empty stack
first. So, the topr (pointer) will be null. Then we create a new node. We
Mlready know how to create a new node (in chapter-4). After that, we make
link between top and the new node. At this stage the top points the new
node. To add the second node (another new node), we make link between the
new node and the stack (especially top node of the stack). To make link
between the new node and the stack, at first the next pointer of the new node
will point the top node of the stack, then top will poirit the new node. Thus
‘we can create a linked stack.

- — top
(top = 4)

mlolD

oW oA

=lmlololT

-

(a): Before pop (b): After pop

Figure-5.3; Pictorial view of pop operation

Algorithm 5.2: Algorithm to delete an elq.mcnt from a stack
1. Declare the stack and top: -

[stack{1 . .. M], top; top
2. Access the top element;
. if (top = = () print “stack is empty™;
else { {empty stack)
x = stack[top];
T}UP =top—1; Y e [(new node)
3. Output updated list. r
tDP e Y I'.I.ptr
5.3 Link based stack g
\ top = nptr,

The stack that is created or implemented using a linked list is called a link
based stack or linked stack.

Data Structures Fundamentals

70

mpj

63

(a) A linked stack of single node

toh

63

|759

nptf
{b) A new node (nptr} and a stack of single node

o2

2 &
top- -2
P- v \
5 |4
nptr
(€} Additon of a new node

Figure-3.5: Pictorial view of linked stack (creation process).

-% Algorithm 5.3: Algorithm to create a linked stack
1. Declare node and pointers:
struct node
{
int data;
node *next;
|5
node *top, *nptr;
2. Create empty list: top = NULL;
3. Create a new node:
nptr = new (node);
nptr—data = item;
nptr—next = NULL;
4. Make link between stack and new node:

Chap.-5 Stack 71

if (tlop = = NULL), top = nptr;
else {
nptr—next = top;
top = nptr;
H
5. Repeat Step 3 and Step 4 to create stack of several nodes.
6. Output a linked stack

‘Comments: top is the pointer that points the top node of the stack and npfr
s the pointer to the new node. ifem is an integer type variable.

532 Add an element to the stack (Push operation)
Push operation in a linked stack can be performed simply by adding a new
node to the stack, which is already discussed when we create a linked stack.

top
E X
W e i e 59 63
P e
¥ an
w0
optc (a) Push operation
top _
40 e 48 | 59 |I™ 59 63
(b) After Push operation
Figure-5.6: Addition of an element to the stack (pictorial view}
~ Algorithm: **Same as the previous algorithm 5.3 (except step 5).

Data Siructures Fundamentals 12

5.3.3 Deletion of an item (Pap operation)

- Pop operation in the linked stack is very simple. Pop operation means to
delete top node from the linked stack. As we know the top (pointer), points
the top node of the stack, so to delete top node, we use a tempnrary]minter
that will point the top node and advance the top to the next node (using next
pointer). Now the top is pointing the next node (next of the top node). We

delete the Enp node using temporary pointer. Figure-5.7 shows deletion (..
pop) of an item from a link based stack. '

> 59
Delete (tptr)
(2): Pop operation

4 59 63

top

(& Do B
(a): After pop operation
Figure-5.7: Deletion of an item from the stack {pictorial view)

Algorithm 5.4: Algorithm to delete a node from a linked stack
1. Declare node and pointers;
struct node
{
int data;
node *next;
b
node *top, *tptr;
2. Input a linked stack
3. tptr = top;
4. Advance (move forward) the pointer, top to perform deletion:
if (top—next '=NULL)

Chap.-5 Stack .

{
top = top—rlmt;
delete (tptr);
}
else top = NULL;
5. Output updated linked list
‘Comments: fop is a pointer that points the top node of the stack and fptr is a
temporary pointer used to delete the node,

8.4 Applications of Stack .

§.4.1 Checking the validity of an arithmetic expression

Using stack we can check the validity of an arithmetic expression. We know

a valid expression the parenthesis, brace or bracket must occur in pairs.
is, when there is an opening parenthesis; brace or bracket, there should

be the corresponding closing parenthesis. Otherwise, the expression is not a

yalid one. The steps involved in checking the validity of an arithmetic

expression using stack are:

a. Whenever an opening parenthesis is encountered, it is pushed on to
the STACK.

b. Whenever a closing parenthesis is encountered, the STACK is
examined.

i. If the STACK is empty, the closing parenthesis does not
have an opening parenthesis and the cxpression is
therefore invalid.

ii. If the STACK is nonempty, we pop the STACK and
check whether the popped item comresponds to the
closing parenthesis.

iii. If a match occurs, we -continue, Otherwise the
expression is invalid.

c. When the end of the expression is reached, the STACK must be
empty; otherwise one or more opening parenthesis does not have
comresponding closing parenthesis and the expression is invalid.

Data Structures Fundamentals !

Exp: [(A + B) - {C + D}] - [F + Q)
: Symbol Scanned STACK
(1} [[
(2) ([
(3) A [
(4) + [
(5) B [
(6)) [
[
[
[
[
[
[

¥

Eamn T e T o T

(7}~

(8) {

(9) C

(10} +
(11) D
(12) }
(13)]
(14}~
(15) [
(16) F
(17) +
(18) G
(19)]

T

¥

e, i, e

Lo B e B e B

In the above example we see the stack is empty at the end, so the expression
1s valid. .

5.4.2 Converting an infix arithmetic expression to its postfix form

An arithmetic expression can be represented in various forms such as prefix
infix or postfix. The prefixes “pre-", “in-", and “post-" refer to the m!atiuf;
position of the operator with respect to its operands. If the operator is placed
‘F.Iefnrc its two operands then the expression is in prefix form, if the operator
15 placed in the middle it is known as infix, and if it is placed after the two
operands it is known as postfix form. Let us consider a simple example with
an operator “+" and two operands “A" and *B".

Prefix: + AB (operator before its operands)

Infix: A+B (operator in the middle of its operands)
Postfix: AB+ (operator after its operands)

s

Chap.-5 Stack 75

In an arithmetic expression we have to perform the operation on the
pperands with the highest precedence first. As for example, let us consider
an cxpression 5 + 10 * 90 / 2. To evaluate this expression we have to
perform the “ * " or * /" first, then the * + ™ operation. Here * " and " /™

* are said to have higher precedence than © + » Moreover if parenthesis is

. present in the expression then we have to consider the operations within the
parenthesis first. Precedence rules of operators are applied within the
parenthesis. This precedence of operators and parenthesis are important to
convert an arithmetic expression to various forms (prefix, infix or postfix),
The precedence rules of operators can-be stated as follows.

Highest: Exponential (* or 1)
Multiplication (* or *) or Division (/ or +)

l Lowest: Addition (+) or Subtraction (-)

i Operators with the same precedence (*, / or +, -) are evaluated according to

their order of occurrence in the expression. For the previous E:xprf:ssian we

'~ ghall compute 10 * 90 (=900) first, then 900/2 {=450), finally we get the
result by computing 5 + 450 (=455).

We can convert an infix expression to postfix form using stack. We start to
scan the expression from left to right. In an expression, there may be some
operands, operators and parenthesis {opening or closing). Each time we get
an operand it is added to the postfix expression. When we get an operator, we

' should check the top of the stack. If the operator at the top of the stack has
the same or higher precedence than the current operator then we repeatedly
pop from the stack and add it to the postfix expression, otherwise the current
operator is pushed onto the stack. When an opening parenthesis 'is
encountered it is pushed onto the stack and when the corresponding closing
parenthesis is encountered we repeatedly pop from the stack and add the
operators from the stack to the postfix cxpression. The corresponding
opening parenthesis is deleted from the stack. The steps involved in the
process discussed above can be written as follows.

e e e

Data Structures Fundamentals 76

Scan the expression from left to right. We shall get a symbol which may be
an operand or a parenthesis (opening or closing) or an operator. The symbol
is treated as follows.

Steps:
a) if the symbol is an operand, add it to the postfix
expression.
b) if the symbol is an opening parenthesis, push it on to the
stack.

¢) ifthe symbol is an operator, then check the top of the stack
i) if the precedence of the operator at the top of the stack
is higher or the same as the current operator then
repeatedly it is popped and added to the postfix
expression.
ii) otherwise, it is pushed onto the stack.
d) If the symbol is a closing parenthesis, then
i) Repeatedly pop from the stack and add each operator
to the postfix expression until the corresponding
opening parenthesis is encountered,
it} Remaove the opening parenthesis from the stack,

Let us consider the expression which we have converted by ingpection.
Expression: 5 *(6+2) - (12/4)

At first we find “5" which is an operand so we add “5” to the postfix
expression (step a). Next we get “ * ™, which is an operator, it is pushed onto
the stack (step c(ii)). Then we get an opening parenthesis, we should push it
on to the stack (step b). We proceed to the next symbol which is “6", an
operand so it is treated as the previous operand 5", Then we get an operator
"+ ", we should add it to the postfix expression (step a). Next the operand
“2" is added to the postfix expression. When we get the closing parenthesis
after “2%, we repeatedly pop from the stack and add the operators to the
posifix expression (step d (i)). Then the corresponding opening parenthesis is
removed from the stack (step d (ii)). The complete process is shown below.

hup.-5 Stack 77

Symbol Scanned | Stack Postfix Expression
1. 5 5 :

2.* . 5

3 (2l 5

4.6 | 5,6

5+ - [, + 5,6

6.2 * (,+ |5 6,2

7.3 * 56,2+

8. - - ‘1 5,6,2,+*

9. (-0 5,62, +"

10. 12 - (5,62+ " 12
11./ -,/ 5,62+ %12

12. 4 - [/ 5,62+ %124
13.) - 5,62 +* 12,4,/
14. 3,0, 2,5 12 S -

pression we obtain in the previous section.
6.2, +, ¥ 12, 4./, -
o evaluate the expression we scan the expression from left to right. The
teps involved in evaluating a postfix expression are:
a. Ifan operand is encountered, push it on STACK
b, If an operator ‘op° is encountered
i. Pop two clements of STACK, where A is the top
element and B is the
next top element.
ii. Ewvaluate B op A,
1. Push the result on STACE.
c. The evaluated value is equal to the value at the top of STACE.

Data Structures Fundamentals T

Symbol Scanned STACK Operation (B op A)

(s 5

(2) 6 56

(3) 2 56,2

(4) + 5,8 [6+2] (A=2, B=6)

(5) * 40 [5*8] (A=8, B=5)

(6} 12 40,12

(7 4 40,12, 4

(8) / 40, 3 [12/4] (A=4, B=12)

9 - 37 [40-3] (A=3, B=40)
Summary:

Stack is a linear list where the elements can be inserted or deleted
from a specially designated position called top. We can “push” (insert)
elements to a stack or “pop™ (delete) elements from a stack.

Stack can be implemented using array or linked lists.

Stack can be used in various problems such as, checking the
validity of an arithmetic expression, converting an infix expression to its
postfix form or evaluating a postfix expression etc.

Questions:

L. Ts stack a data structure? Why?

2. Write algorithms to perform push and pop operations for a stack when
stack in an array based structure.

3. “All stacks are lists, but all lists are not stacks™, explain this statement
with examples.

4. Write algorithm(s) for push and pop operations when stack is a linked

Structure,

5. Write an algorithm to push an item to a stack, where stack is a linked
sinucture,

6. Write algorithm(s) to add a node and to delete a node from a linked
stack.

7. Write an algorithm to delete an element form a stack, when stack is
linked structure.

Chap.-5 Stack ; 79

Convert the following infix expression into its equivalent postfix
expression and evaluate the postfix expression, Use stack for the
operations. 12/7-3+2 * (1+5)
Show all the steps to evaluate the following postfix expression using
postfix expression evaluation algorithm:
: ABC+*CBA-+*

: Assume A=1,B=2and C=3

10. Write the algerithm which transforms infix expression into postfix

expression. ;
:i! 1. What do you mean by infix, prefix and postfix notations for an

~ arithmetic expression? Explain,

d 1. Suppose, we have the following arithmetic infix expression Q:
QA+B*C-(D/ETF)*G}*H

Devise an algorithm to transform () into its equivalent postfix

expression P.

Problems for Practical {Lab) Class

Stack related problems

blem 5-1: Create an ammay based stack with some integer data in
scending order. Print the data in descending order.

-I roblem 5-2: Solve the problem 5-1 using linked stack.

‘Problem 5-3: Create an array based stack with character data and print it in
teverse order. Your program must give correct output for all valid input.

Sample input: American Intemational
‘Sample output: lanoitanretn] naciremA

' Problem 5-4: Solve the problem 5-3 using linked stack.

' Problem 5-5: Given a mathematical expression, print the output as “valid” if
the expression is valid otherwise print “invalid”. In case of invalid, print out
the reason(s). Hints: take input as [(a + b) - (¢ - d) + €] and validate
expression using stack. Your program must give comect output for any input
expression.

Data Structures Fundamentals

an

Prnb_lem 3-6: Evaluate arithmetic expression using
take input 5 + (10 * 2 + 5)*8 / 2; convert the infix to

stack. As for example
postfix expression and

evaluate it using stack. The output of the above expression will be 105, Your

program must give correct output for any valid input.

CHAPTER SIX

QUEUE

Identify queue

Describe the process of addition of an item to a quene

Write an algorithm to add an item to an array based queue
Bescribe the process of deletion of an item from an array based
queue '

Write an algorithm to delete an item from an array based queue
Drawbacks of array implementation of queue

Describe the creation process of linked queue

Describe the process of addition of an item to a linked queue
Write an algorithm to add an item to a linked queve

Describe the process of deletion of an item from a linked queue
Write an algorithm to delete an item from a linked queue

b R A

YV Y Y VY Y

) our daily life, when we stand on line to get into the bus or to take money
f om bank counter, we make queue. The man who stands first will get into
the bus first, and the man who stands last will get into the bus last. In other
yords, the element which is added first will get service first and the element
vhich is added last will get service last.

Queue is a linear list where all additions are made at one end, called rear,
ind all deletions (accesses) are made from another end called front of the
. 50, in a queue there must be two indicators or pointers. One is rear used
10 add elements and another is front used to delete {access) the elements
from the queue.

Data Structures Fundamentals 82

Queue is a FIFO (First In First Out) structure. That means the element that is
added first will be deleted (accessed) first. As stack, queue can he
implemented using array and linked list,

L X @ 4 B se o R D
A | ol E T P

7 7
front rear
{a) Array based queue
40 |1 48 » FO » 51 63
* Y
frontptr rearptr

(b) Link based queue
Figure-6.1: Graphical representation of queue

6.1 Array based quene

The queue that will be created using an array is called array based queue.
Here, we have to use two indicators (two index idanti.ﬁersj. One indicator
will mark the front element and another will mark the rear element of the
quene,

6.1.1 Addition of an element in an array based queue

We know in a queue element is added at the rear. So, to add an item at first
we increase rear index and then place the element in the array-based queue
using the rear index, s

Algorithm 6.1: Algorithm to add an element to queue
1. Declare array based queue and other variables:
que[l......M], item, front, rear;
2 if (rear =0)
&
front = rear =1;
que[rear] = jtem;

}

=0 Queue 83
3. if (rear < M)
{

rear = rear +1;
quefrear] = item;

else print “Over Flow message”

4. Output: Updated queue.
mments: Here que[] is an ammay to make a queue and M is the size of the
e (array); ftem is a variable to add (insert) data in the queue. fronf and
r are two variables to indicate the first and last elements of the queue.

1 2 3 4 § G

L R e ol b

(1) An empty queve and ifem (35)

front = rear =0

ftem = 35

1 2 3 4 5 13
] i S O
& A

front rear

front = rear = |

quefl] = 35

(o) Adding the figst element of the quens

R S A £ 58 1
que(6] |35[4s[25|13|] | e =N

front =1

rear=4
ront rear

(c) An array based queus and item (59)
1 2 3 4 5 L
e =]l]]
: Al i 'y

ront rear

rear =pear+ 1= 5

(d} Advaneement of the rear
' BN K ek
|35|4s[zs|13|59|

l quefrear] = item
que[5] = 5%

fromt rear
{&) Insert fenr in que[rear]

Figure-6.2: Addition of new items in an array based Queue {Pictorial view)

Forma-7

Data Structures Fundamentals K ap.-6 Quene B

6.1.2 Deletion of an element from a queune _ Lo ey B s Bl front=1
We know that, the element is deleted from the front of the queue. So, at firsi quel6 | |_35 | i | 5 l B l 59 I J rear =5
we access the element, and then we increase the front index. :,mt ,:.,

(a) An array based queue
Algorithm 6.2: Algorithm to delete an element from a queue
1. Declare array based queue and other variables:

quefl...... M], item, rear, front;

1 2 3 4 5 &
[Jelz][s]s]
3

item = queffront] = 35
| front = front + 1

;mt rear froni=2 rear=5
2 if (fro) () Deleting the first element of the queue
; i nt = rear
{ 1 2 3 4 5 &
item = que[front]; fromt = rear
front = rear = 0; [eod:cnf=uelo] 5: B
Fiy rear
front
(€} The queue wath only one clement !
3 if (front = 0) ol S N e A item = gue[front] =59
‘ ; front = rear=0
{ L ol sl] 4ol
;L:nt= quE[frf_nlt]; dy Deledion of the last element of the quene
nt = front + 1; A ¥
H Figure-6.3: Deletion process of an array based queue (pictorial view)

else print “Queue is empty” §.1.3 Drawback of array implementation of queue

array implementation of queue, some space may be wasted. There may be
yituations, where the rear reaches the highest index value of the array, but
frec spaces are available at the beginning of the queue. Let us consider the
following situations.

4. Quiput: Updated queune

Comments: If there is only one element in the queue, i.e., front = rear and

after deletion of that element, front and rear both will be 0; i.e., front = rear E E
=0, which indicates an empty queue. D R D s
font=0 | C c
rear =0 B front=3
A . |front=1
@ ® ©

Figure-6.4: Pictorial view with odd situation of queue

Data Structures Fundamentals B

-6 Queue 87

Figure 6.4(a) shows an empty queue. Figure 6.4(b) shows the queue afier
inserting five elements {A, B, C, D, E}. If we delete two elements from the
queue shown in Figure 6.4(b), we get the queue shown in Figure 6.4(c).

Now, let us consider we want to insert F into the queue. As we have seen in
earlier section, to insert F we have to increase the value of rear (rear = rear
+1). So the value of rear increases to six which is greater than the size of the
queue. In that situation, logically we can't insert F into the queue although
there are free spaces in the queue. One solution to this problem is to check
whether a queue is full or not, we have to check the condition in Figure6.4
{b), that is front = | and rear = 5 (maximum size of the queuc).

In situations where rear is equal to the maximum size of the queue but front
is greater than 1 (Figure 6.4(c)), to insert an element we have to set the value
of rear to 1. Then to insert more elements we shall increase rear, But, the
maximum value of regr should be one less than the value of front i, front-
L. In that case to check if the queue is full we have to check the condition
front = rear + 1 (see Figure 6.5(g) below). The pictodal view to insert F and
G in the quene of Figure 6.4(c) is shown below.

E E
D D.
front=3 | C frent=3 | C
rear=2 G rear=2 G
rear=1 . F front=1 F
(d) (e) 0

Figure-6.5: Pictorial view of addition of clement with odd situation of queuc

For the situation discussed above the front will also follow rear that is after
deleting the element at the highest position of the queue the value of front
should be one. After the deletion of C, D and E the queue is shown in Figure
6.5(f). . -

r considering the above situations, we can modify the insertion and
ion algorithm for an array based queue as follows.
rithm 6.3: Algorithm to add an element

i

6.

Declare array based queue and other variables:
que[l ... M), item, front, rear;

If {rear = 0) //the queue is initially empty

{
front = rear = 1;
que[rear] = item;

}

If{rcar=Mm1dﬁ‘nnt> 1) /* where rear s the maximum size of the

{ queue but there are emply spaces in the queue
rear= I; (Figure 6.4(c))*/
que[rear] = item;

H

If (rear '=1 and rear < front - 1)

{

rear = rear +1;
quefrear] = item;

}

If ((front = 1 and rear = M) or (front = rear +1)) /* queue is already
print “Over Flow message” ﬁ{:;; E‘ﬁ:;?'qh} o,

Output: Updated queue.

gorithm 6.4: Algorithm to delete an element

L.

7

i

Declare array based queue and other variables:
que[l . .. M)], item, front, rear;
If {front = rear)
{ -
item = que(front];
front = rear = ();
}
If {front = M) /* where front is the maximum size of the quene®/
{
item = que[front];
front=1;

Data Structures Fundamentals it

-6Quene 29

4. If (front =0 or frogt != 1)

{
itern = que[front];
front = front + 1;

¥

else print “Queue is empty™

Output: Updated queuye.

6.2 Link based queue

The queue that will be created using a linked list is called link based queuc
or linked queue. In a linked queue we use two pointers, one is Sfrontptr points
the front (first) node of the queue and another is rearptr points the rear (last)
node of the queue.

25 ™ 12 | 24 S | —» 78

* X
frontptr rearptr

Figure-6.6: A linked queue

6.2.1 Create a link based queue

As we know in a linked queue, there are two pointers, frontpir and rearpir,
so to create a linked queue we have to use these two pointers. At first we
create an empty (linked) queue. So, the frontptr and rearptr both will be null.
After that, we create a new node with an external pointer, npir. Now, we
shall add this new node to the queue. To add the new node, we assign the
value of nptr to frontptr and rearptr. Thus, frontptr and rearptr both point
the new node. Now we have a node in the queue. To add second node, we
create another new node and add this node to the queue. To add the node we
make link between the existing queue and the new node. Since the new node
will be the rear element (nodc), so the next pointer of the new node will
point the rear node (at present only one node) of the existing queue and the
rearptr will point the new node. That means, at present the frontptr points
the front (first) and the rearptr points the rear (second) node of the queue.
Thus we can add another node and create the linked queue.

gorithm 6.5: Algorithm to create a linked queue
1. Declare node and pointers:
struct node
{
int data;
node *next;
i
node *frontptr, *rearptr, *nptr;
2. Create an empty quene: :
frontptr = NULL;
rearptr = NULL;
3. Create a new node:
nptr = new (node);
npir—data = item;
nptr—next = NULL;

4, Make link new node with the rearpir and frontptr:
if {rearptr == NULL)

{
rearptr = nptr;
i frontptr = nptr;

b

else {
rearplr—rnext = nptr;
rearptr = nptr;
¥

5. Repeat Step-3 and 4 to create queue with several nodes
6. Output: A link based queue

wmments: Here, froniptr is a pointer to the front node and rearprr is a

inter to the last node of the queue. nptr is a pointer that points to the new
and item is a variable used to enter data to the new node.

o1,

Data Structures Fundamentals Uil Chap.-& Queue
{
' nm rearptr = nptr;
= nptr;
fromtptr TEArpIr fipir frentptr = np
{2) A linked queve of single node and 2 new node [nptr) }
else {
rearptr—next = nptr; x
el L, rearptr—next = npir = i
[, oo
frontptr rearpir - #a hptr }

(b)) A new node (npte) and a sack of single node 3. Qutput: Updatncl linked list

40 P B 1 2 I 2
(== N : ; »
* t frontpir peArpr
frontptr rearptr pir

(€} Updated linked queuse {a) A linked gueus and o new nede

Figure-6.7: Pictorial view of linked queue (creation process) 1
a0 p @ T bl it L T
i 7 %
6.2.2 Add a new node to linked queue - T, TR

Addition of new node to the linked list is similar to the creation process

where we add a new node at each stage to create linked queue. (b) Making link between queus and new node.

Algorithm 6.6: Algorithm to add a node to linked queue ' Figure-6.8: Add a new node to a linked queue

1. Declare node and pointers: 6.2.3 Delete a node from a linked queue

S As we know in a queue deletion operation must be performed from front of
: the queue, so to delete the front node of the linked queue, we have to use a
e temporary pointer that will point the front node. After that wt: advance the
i i frontptr pointer to the next node. Now just delete the node using temporary

H
node *frontptr, *rearptr, *nptr;
2. Input a linked base queue
3. Create a new node:

pointer.

Algorithm 6.7: Algorithm to delete a node from a linked queue
1, Declare node and pointers:

nptr = new (node); struct node

nptr—data = item; { y

nptr—next = NULL, int data,
node *next;

4. Make link among the necessary pointers:

if (rearptr = = NULL) b

Data Structures Fundamentals 92

node *frontptr, *rearptr, *tptr;
2. Input a linked base queue

3. Use temporary pointer, tptr and advance {move forward) the
forntptr:

tptr = frontptr;
frontptr = tptr—next;

4, delete (tptr);

5. Output: Updated linked queue.

Comments: Here, frontpir is the pointer to the front node and rearptr is the

pointer to the last node of the queue. tptr is a temporary pointer that points to
the first node to be deleted.

ERLER N N R

frontper
() A Lk based queune
3. Delete (spts)
L tper = frontper o —_— -
L frontptr = qptr—rnext °, 50 A1 %]
3. delete (tpir) “-‘ “I J
IME = = L - = frontpir rearptr

i) Drelerion of the first node from the quene

Le I » [a [P« N
t‘m)

|P|.I' lu.lFlE
{6) Upduted linked quewe

Figure-6.9: Deletion of node from a linked queue (pictorial view)

Summary:

Queue is a list where the elements can be inserted into a specially designated
position called the rear of the queue and deleted from a specially designated
position called the front of the queue. Queue can be implemented using array
and linked list. Queue can be used in various problems where first in first out

implementation is required, because queuc is a first in first out {FIFD)
structure.

93

Questions:

|, Define queue. Give example.

List some differences between stack and queue.

Show the disadvantages of array implementation of a qucm: Also give
the possible solutions to overcome these disadvantages.

Write a function that returns the number of elements is a queue that has
been created previously.

Define linked queue with example. g :

Write algorithm to add a node to queue when quecue is a linked list,
Write an algorithm to delete a node from a queue, when queuc is a
linked list.

Write algorithm(s) to insert an element and delete another element from
a queue where queue is an array based structure.

OBJECTIVES;

TREE

We see tree in nature. The tree has root, branches, sub-branches and leaves.
From the concept of natural tree, the computer scientists get the idea of a
data structure, which is graphically similar to natural tree. Natural tree is A
bottom-up figure. However, the graphical representation of the data structure
tree is a top-down figure,

A tree is a finite collection of nodes that reflects one to many relationship
among the nodes. It is a hierarchical structure. An ordered tree has a
specially designated node called root mode. The root node may have one or
more child nodes. The connection line between two nodes is called edge.

The nodes of a level are connected to the nodes of the upper level.

¥Y¥ V¥V ¥ VYV Y Y Y Y Vv

CHAPTER SEVEN 2

'TREE

Identify tree

Describe binary tree traversal methods

Identify binary search tree (BST)

Describe the a:dditiup process of a node to a BST
Write an algorithm to add a node to a BST
Describe the deletion process of a node from a BST
Write an algorithm to delete a node from a BST
Describe heap creation process

Write an algorithm to create a heap

Describe the process of heap sort

Write an algorithm for heap sort

Figure-7.2: A binary tree
A binary tree can be implemented as an array or as a linked: li:;'stz The z:bm
Figure-7.3(a), can be implemented as an amay as shnw.n in Fllguru- 3(b).
Whereas, Figure-7.3(c) shows tree implementation as linked 1151‘..- Inlarm:,r
Implementation, memory space may be unused (wasted) as shown in Figure-

7.3(b).

sl - TasTa] | [=] o= il
'rl I 1 (c): Tree as a linked List (nodes arc
© (b): Tree as an amay . :Inwrlirll'ﬂllﬂ_dﬂm’“‘

*

Figure-7.1: A Tree

Data Structures Fundamentals a6

(d) Tree as a linked list (nodes are shown in rectangular shape)
Figure-7.3: Tree implementation (store in memory)

If there are & levels in a binary tree, then the maximum number of nodes in
the tree is as follows:

n=2-1
For example, if & = 3, then the maximum number of nodes () is 7 and for &
=4, =15 and 50 on.

When the maximum number of nodes is known, number of levels can be
calculated as -

k= ﬂﬂgz (n+ ln

For example,

when n=17; k= [log, (17+1)] = [log, (18)] =[4.1.....] =5
whenn=34; &= [log, (34 +1)] = [log, (35)] = [5.2...] = 6; etc.

W]_I_] means ceiling of x to the next inleger

7.1.1 Parent-Child Relationship

If we consider the root's position (index) is 1. A node is in position (index) i
of an array, then the position of its left child will be 2§ and the position of its
right child will be 2{ + 1. Thus

o

- Chap.-7 Tree o

the position of its parent node will beL%J. ij means floor of x to the

previous integer. The position of root node is 1 and its children’s positions
are 2 and 3. If a node value stored in position 4, then the positions of its
children will be 8 and @ and so on. When a node is stored in position 13, then
the position of its parent is-

l%]=|_ﬁ.5_{=ﬁ

If we consider the position of the root node is o and any node is in position i,
its left child's position will be 2i+1 and right child's position will be 2i+2. On
the other hand a node of position k has its parent is in position (k-1)/2, where

I..f means integer division.
B

Iptr rpir
A binary tree can also be implemented (stored in computer’s memory) as a
linked list. The node of the binary tree can be defined (declared) as follows:
struct node

{

int data;

node *lptr; -

node *rptr;
- b ;
where Iptr is a pointer that points the left child and rper is a pointer that
points the right child. data is an integer variable to store value of the node.
That means, a node has three parts. One is data part (value), the second is a
pointer to the left side (node) and the third is a pointer to the right side
(node). Linked implementation of binary tree other than complete tree is

oy

efficient.

Data Structures Fundamentals %

Full binary tree: ’
If a binary tree contains nodes in such a way that every node has at least two
children except the nodes at the last one deepest level (the leaves are at the
de_c':‘gﬂ_eal level), then the tree is called a full binary tree.

Complete binary tree:

If a binary tree contains nodes in such a way that every level except the
deepest has as many nodes as possible and the nodes of the deepest level are
in as left as possible, the tree is called complete binary tree. All full binary
trees are complete binary trees.

If a binary tree is a complete binary, then its array implementation is
efficient; as there will be no wastage of memory.

(b} A complete tree

(a) A full tree

- Figure-7.4: Pictorial view of full tree and complete tree

(Tr;ld/f raversal technique of a binary tree
here

are three main traversal techniques (methods) for a binary tree. Such
a5 e
1. ‘Pre-order Traversal Method
2. In-order Traversal Method
3. Post-order Traversal Method

21 Pre-order tram'eféls;i m.'ethéuill '
In pre-order tree traversal method the points below are to be followed:
i. Visit the root,
ii. Traverse the left sub-tree (in pre-order),
iii. Traverse the right sub-tree (in pre-order).

s

Minp.-7 Tree

Figure-7.5: Pre-order _travmal method

pre-order traversal method, we have to visit the root node first. Then we
\raverse the left sub-tree following the above 3 points (i, ii, iii) recursively.
I fler that we traverse the right sub-tree by following the above three points
fecursively.
As for example, to traverse the tree in Figure-7.5, at first we visit the root of
tree, then we visit the root node of the left sub-tree, where the node value
{8 B. Then we will go to the left sub-tree of the tree with node value D. In
juch way we will complete the traversal process of the left sub-tree.
Afier that, we will visit the node value C, which is the root of righf: sub~ltr0‘:lo=
d similarly other nodes will be visited by following the three points (3, 1,
ii). Thus visiting sequence of the node values will be ,
ABDHECFIGJ

Figure-7.5, visiting sequences are marked as 1, 2, 3 and so on.

Algorithm 7.1: Algorithm for pre-order traversal
* 1. Inputa binary tree
2. preorder (node * curptr)

{ ;

if (curptr!= NULL}
{ .
print curptr—data;
preonder (curptr—lchild); - it 1
preorder (curptr— rchild); i
} i

}
3. Output; the information of the nodes.

Data Structures Fundamentals 1K)

\W—Iﬂ'ﬂﬂ' traversal method i
in-order tree traversal method the points below are to be followed:

i. Traverse the left sub-tree (in-order),
ii. Visit the root,
iii. Traverse the right sub-tree (in-order).

Fig(d)
Figure-7.6: In-order traversal method

In in-order traversal method, we have to visit the left sub-tree first, So, we
have to start from the last node at left of the left sub-tree, Then we visit the
root and at last we will visit the right sub-trec by following the above
mentioned three points (i, ii, iii). Each time we traverse a node, we must
think its parent node as the root of that tree-section. The left children of that
root will be treated as left sub-tree and the right children will be treated as
the right sub-tree.

As for example, to traverse the tree in the Figure-7.6(a), we have to start the
last node at left (H) of the left sub-tree. Then we visit its parent node, D {as
the root of the tree-section). In the same way we visit the node, B as the root
of D and at last we have to visit the right sub-tree of node D. That means
now we shall visit node E and we shall continue 1o traverse the whole tree.

In in-order traversal method, the visiting sequence of the tree in the Figure-
7.6(a) will be as follows
HDBEAIFCG]J

Chap.-7 Tree 101

If we traverse the tree in the Figure-7.6(b), we have to start from m.dF.D'
Then we will visit the node H as the right sub-tree. Sequence of visiting
other nodes will remain same as the previous. Therefore, visiting sequence

will be as follows —

DHBEAIFCGJ

In Figure-7.6, visiting sequences are marked as 1, 2, 3 and so on.

Algorithm 7.2: Algorithm for in-order traversal

1. Input a binary tree.

2. inorder (node * curpir)

i

. if (curptr!= NULL)

{ :
inorder (curptr—Ichild);
print curptr—+data;
inorder (curptr—rchild);
}

}
3 ut: the information of the nodes.

11 er traversal method:
[n post-order tree traversal method the points below are to be followed:

i Traverse the left sub-tree (in post-order),
ii. Traverse the right sub-tree (in post-order),
iii. Visit the root.

Figure-7.7: Post-order traversal method

Data Structures Fundamentals 102

In post-order traversal method, we shall start visiting the tree from the left
sub-tree. Then we visit the' right sub-tree and at last we visit the root of the
tree by following above mentioned three points (i, ii, and i),

For example, to traverse the tree in Figure-7.7, we shall start the left most
node of the left sub-tree, H and we traverse the left sub-tree using the points
i, ii, and iii. After that we visit the right sub-tree accordingly. At last we shall
visit the root of the tree, A.
According to post order method, visiting sequence for the tree in Figure-7.7
will be as follows —

HDEBIFJGCA

In Figure-7.7, visiting sequences are marked as 1, 2, 3 and so on.

Algorithm 7.3: Algorithm for post-order traversal
1.Input a binary tree.
2. postorder (node * curptr)

{

if (curptr!= NULL) il
{
postorder (curptr—lchild);
postorder (curptr—rchild);

print curptr—data;
} .

utput: the information of the nodes.

! 3
0
Bjfiary Search Tree (BST)
ary search tree is a binary tree where all the node values of the left sub-

smaller than the node value of the root of the tree, and all the node
values of the right sub-tree are greater than the node value of the root. If we
treat the left sub-tree as a tree, then this tree (left sub-tree) will also follow
the above characteristics and this must be true also for the right sub-ﬂ%

If the structure of a BST is a complete on balanced binary tree, it gives best
performance and the time complexity of any operation (insertion, deletion,
searching) is O(log n). If care has not been taken, the height of a BST may
become n, where n is the number of elements in BST. Thus it takes O(n)
time for any operation. Usually BSTs are not complete binary trees, so
linked list implementation of BST is efficient. Here, we assume that the BST
1s stored in memory as a linked list and for this type of implementation we
shall write the algorithms for operations on BST.

Chap.-7 Tree 10

\F/}a@ﬁaaw search tree (BST)

7.2.1 Searching a particular node value of BST

- Suppose that we are given a BST and value of a node, we have to determine
whether the node exists in the BST or not. We know that in a BST each data
in left sub-tree is smaller than the data in root and each data in right sub-tree
is greater than the data in the root. So, to find out the target data, at first we
gompare the target value with the data in the root node, if they are equal,
then the searching is successful and terminated. On the other hand, if the
target value is smaller than the value of the root, then we search the target
value in the left sub-tree in the same manner which is done for the tree.
Otherwise, we search the target value in the right sub-tree in the same
manner which is done for the tree.

Algorithm 7.4: Algorithm to find out a particular node value of BST
1. Input BST and a nede value, x;

. 2. Repeat Step-3 to Step-5 until we find the value or we go beyond the
tree, ,
'3, If x is equal to root node value, searching is successful (print

“Found™) and terminate the algorithm.

4, Ifx is less than root node value, we have to search the left sub-tree
{by treating it as a BST).

5. Else we have to search right sub-tree (by treating it as a BST).

15.. Otherwise the node value is not present in BST (print “Not
Found™).

7. Output: Print message “FOUND" or “NOT FOUND"

Data Structures Fundamentals 104

Suppose, we have a BST as in Figure 7.9 and we have to find out the value x
= 32. At first we compare 32 with 50 {the value of the root node). Since, 32
< 50, then we move left and compare 32 with 35 {which is the value of root
node of the left sub-tree). Since, 32 < 35 , we move left again. At this point
we compare 32 and 30. But 32 > 30, so we move right and find 32. The
searching path is shown by shaded nodes in Figure 7.9.

7.2.2/Add a node to a BST :

To add"a node to a BST, we have to find the proper position for the node. To
do this, we use searching method which is stated above. If the value to be
added is already present in the BST, the node should not be added.

Otherwise, when we find last node in the searching path, we shall add the
node on its (last node’s

I-‘Wﬁamhing of a node value (shaded nodes show the searching path

Repeat Step-3 to Step-5 until we find the value or we go

beyond the tree.

3. If x is equal to root node value, searching is successful and
terminate the algorithm.,

4, Ifxis less than root node value, we have to search the left sub-
tree (by treating it as a BST).

5. Else we have to search night sub-tree (by treating it as a BST).

6. Make link between the new node and the parcnt node of the
new node,

7. Qutput: Updated BST.

105
~1 Tree

se, we have a BST as in Figure 7.10 {a) and we have to add ﬁl':} as a
alue of a node. At first we search the value 60 in the BST according to
rching procedure. Since the node with 60 does not exist in the B.E‘.T, 50 we
add it in the BST. If we notice the searching path shown in Flgur:: 7.10
), the value 60 > 50, it has been added as right child of the node with the

ue 50.

a) A binary scarch tree

b) Addition of a new node (shaded nodes show the searching path).

igure-7.10: Addition of a new node to BST

a node from BST _ _
I'o delete a node from a BST, we have to perform searching to find out the

t node. After finding the target node (the node to be deleted), three cases
be considered. One, if the target node is a leaf node, then we just del::te
node. Second, if the target node has only one child, then we make link
between the child and parent node of the target node. Third, if the .ta[g.ﬂ
node has two children (with grand children also), we do another searching in

Data Structures Fundamentals

left sub-tree of the target node and find the node that has maximum value
{cunsldcnng the sub-tree), 'and mark it. Then the value of the target node iy

replaced by the maximum value and we delete the marked node (the node
with maximum value).

In the Figure 7.11, we have shown the deletion of a ﬁodc that. has two
children. At first we find the value of the node to be deleted (which is &0).
Since it has two children, we find maximum value from the left-subtrec

(which is 55). Then we replace the value of the node to be deleted by 55.
Lastly we delete the node of the left-subtree with maximum value,

b} Searching the node with value §0
{Shaded nodes an: explored).

)

(] Searching the maximum value from the
lefi sub-tree of the node to be deleted
{dark shaded node).

(i) Place it to the node to be deleted,

A} Delere the node with maximem valoe
(from the left sub-tres of the node to
be deleled) and get updsied RST.

Figure-7.11: Deletion of a particular node from a BST

[l

Chap.-7 Tree i

Algorithm 7.6: Algorithm to delete a node from a BST

1. Input BST, the value of the node to be deleted;
2. Locate the node to be deleted;
3, If the node iz a leaf node:

1. if the node is left child of the parent, make ‘NTJLL the
left pointer of its parent node and free the space for
the node (delete the node).

il. if the node is right child of its parent, make NULL the
right pointer of its parent node and free the space for
the node (delete the node).

4. If the node has one child:

i if the node to be deleted is a left child of its parent,
then make link between the left pointer of its parcnt
node and the child node (left or right) of the node to

' be deleted. Then delete the node.

ii. if the node to be deleted is a right child of its parent,
then make link between the right pointer of its parent
node and the child node (left or right) of the node to
be deleted. Then delete the node.

5. If the node to be deleted has two children:

i locate the node with minimum value from the right
sub:tree of the node to be deleted or the node with
maximum value from the left sub-tree of the node to
be deleted.

ii. replace the node value to be deleted by the node value
found in step-5{i)

iii. delete the node located in step-5(i)

6. Output: updated BST.

It is a complete binary tree cach of whose node’s value is greater (or smaller)
than the node valuc of its children. If the node value is greater than the node
value of its children, then the heap is called max heap. Otherwise, the heap is

*.called min heap.

109
Data Structures Fundamentals

(%)
® W
© @ ® ®

(#): A max heap

According to the above description the pictorial view of h::ap crr.atin?-l
process is shown in Figure 7.13. At first we take 45 from ti.w list and a?dd it
#8 root of the heap. Then we take 28 from the list and add it as left child of
root and compare it with the value of the root, since 28 < 45, so the tm‘:
8 & heap. After that, we add 52 as the right child of the tree and compare it
with 45 (which is at the root). Since 52 > 45, so we put 52 at 'Ehc root and 45
In the place of right child (position C in Figure 7.13). In this way we can
e a heap shown in position I of the Figure 7.13.

ivenList; 45 28 52 25 60 70
A wpidl f

® ® 2

Figure-7.12: Graphical representation of Heap

Since heap is a complete binary tree, so array implementation of heap is
efficient,

‘_,.r'"-
73.1H atidn

Creation of a heap from a given list of elements (numbers):

We add the elements one by one and place them in respective positions,
Here, we add the child at the left position first, then at the right position,
Using the following steps given below, we can create a max heap:

D
(52

1. Add an element as first element (root) of the heap.
2. Select a child and place it in proper position:
. Add the next element as left child. If the lefi child is
already present, then add as the right child
. Compare the child with its parent. If the parent value is
smaller than the child’s value, then place the parent’s value
in the child’s position and the child's value in parent’s
position.

iii. Repeat the step-2(ii) until we find a parent whose value is
greater than the child’s {which is added last) value or we
go beyond the root,

3. Repeat the step-2(i) to 2(iii) for rest of the elements.
4. Get a heap as an output.

1. Input an dfray A[l...n] with data and a variable, temp
{a list of data is in the armay, A)
2. for(i=2;i =n; +Hi)

Data Structures Fundamentals (RI1]

3. while (k > 0 and A[K/2] < temp)
{
Alk]l= Alk2]; -
k=2,
]
Alk] = temp;
}
4. Qutput array A [1...n] as a heap

Comments: &/2 means integer division of k by 2.
The time complexity of creating a-heap is O (n), where n is the number of
elements érodes), :

¢ know the maximum value is at the root, we can perform delete
maximum operation by following steps given below:
- 1. Remove maximum from the root and assume there is a hole at the
root node
2. Take the data of the last position in a temporary variable {such as
temp) ;
3. Compare the children of the hole, identify (locate) greater child and
compare it {greater child) with temp
4. Place the greater data from step-3 to the hole ;
3. Repeatstep 3 and step 4 until we reach the leaf
6. Ifthe hole is in a leaf, place data if tem to the hole.

Delete maximum operation is illustrated using Figure 7.14 as follows:
b |

S ——

Chap.-7 Tree 111

®

®

I"-iucimum—l

.
Q ()
OWNGCYONO
@ O

(a) A Max heap
()
Q ®
QNN ONONO
@)

hale

Inputa heap, A[1...x]. // The heap as an arra
i=2; _ :
temp = afk];
while (i <= k)
{
if (i < k) and (a[i] < a[i+1]))
i=i+1;

| Data Structures Fundamentals 112

=7 Tree

113

if (temp >= a[i]) break;
a[i/2] = a[i];

Pseudo code of the algorithm 7.9 is as follows:
void heapify (int a[], int n)

i=2%;
) A
i a[if2] = temp; for (i =2; i< = n; +H)
dated heap with (n — 1) elements. {
temp = ai];
| k=i;
Problem: Given a list of n elements, sort them using heap. while((k > 0)&&(a[k/2] < temp))
.| Solution: We can use the following steps to sort data using heap. {
1. Creale a heap with n numbers. We can create heap using the alk] = a[k/2];
algorithm 7.7. : }
2. Place the value of n" (last) node in a temporary variable (such as afk] = temp;
| 508 : }
| 3. Place the value of the first node (root at present) in the n® node. }
- 4. Treat there is a hole at the root. void rearange (int a[], ink k)
| 5. Compare the children of the hole, locate (identify) greater child. I
6. Compare the greater child with temp 1k texp, 1;
| ‘ 7. Place the greater data in hole temp = afk];
8. Repeat step 5 and step 6 until we reach the leaf, a[k] = a[1];
| 9. If the hole is in a leaf place the data of temp to the hole B2
10. Consider the rest of the data (which are in a heap) except last one. while ((i+1) < k)
| 11. Repeat the step-2 to step-7 until there is only one element in the { - 3 :
|= heap. (See pictorial view in Figure 7.15) fﬂ_f:fm&&(n[ﬂ-:atrﬂn}
- : i=itl;
; Algorithm 7.9: Heap sort algorithm. if(temp >= afi]<a[i+1]))
1. Input an a[i...n) with random data; it
2. heapify (a, n) ifitemp>=a[i]) break;
3. for(k=n;k>1,-k) . .
a[i2]=a[i);
rearange (a, k); i=2%;
5. output a sorted list in a[n]. : }
a[i’2}=temp;

Data Structures Fundamentals

114

The time complexity of heapsort is O (n log n)

(95)
@ @ temp = 28
B ®»® &®

A Max heap with n elements

Amy: [o5 [60 |59 | 52 |30 | 45| 28 |

a) A heap and its corresponding array

Amay: 6n|52|59[zs|3-9l45 95

b} First step of sorting process using heap

hap.-7 Tree | 115

Amy: [59 [52 [45 [28 [30 [o0 | o5 |

¢} Second step of sorting process using heap

28 | 39 | as |52 |59 | e0 | o5
d} Sorted data

Figure-7.15: Pictorial view of heap sort process

7.3.4 Priority Quene .

Priority queue is a structure or queuc where elements are maintained based
‘on their priority (priority number). In a priority queue each element is
associated with a value and maintained according to its priority and ofien
implemented as heap. We can put the element with the highest priority at the
root of the heap. A priority queue allows at least two operations: Inserts and
Delete minimum, or Delete maximum. -

Dne application of priority queues is to schedule jobs on a multiuser system.
The jobs are stored in or priority queue and to be performed according to
their priority where a job is finished, the next job is selected based on their
- priority from the remaining jobs.

Letus mn_sider the following example

Priority Data Abbreviation

1 Chairman C
2 Director-1 D-1
3 Director-2 D-2
4 Chief Engineet CE
5 Manager ; M
[Engineer E

_7 | Deputy Manager DM

Forma-9

Data Structures Fundamental | '
niele 116 " Chap.-7 Tree 17

—

We can create a priority queue (heap) using abbreviation data according to
their priorities as follows: -

j An array implementation of a complete or full binary tree is
pfficient, otherwise linked implementation is efficient.

Questions:

|. How a binary tree can be stored in computer memory using array 7

Explain with example.

Define complete and full binary trees.

Describe inorder tree traversal method with example.

What are the ways to represent binary tree in memory?

Write a procedure to construct a binary tree from a list of input data.

Construct a BST with the following list of values:

50, 15, 10, 13, 20, 22, 55, 60,42,57 -

Write a procedure that deletes a node from a BST having only one or no

child.

Discuss linked representation of a binary tree. .

What will be the depth of a complete binary tree which has 3000 nodes?

. What will be the sequence obtained by in-order and post—order traversal.

. Suppose a binary tree T is in memory. Write an algorithm to find the

depth of T. ;

12, Suppose a binary tree T is in memory. Write an algorithm to delete all

the terminal nodes in T.

. Show the parent-child relationship and child-parent relationship with

respect to their positions in binary tree.

. Write an algorithm to create a heap.

15. Explain Prim’s algorithm with example.

Write an algorithm to insert a node into a binary search tree.

. What do you mean by minimum spanning tree?

. What is the difference between BST and heap?

Y. You are given / th node of a binary tree. Show that, the relationship of

the parent of i th node and the relationship of / th node with its children.

Give example.

Construct a heap using the following data (show each step separately)

19,40,5,17,23,51,9,29,21,3,7,24,27.

. Describe a heap creation process with example.

. Write an algorithm to delete an item from a heap.

. Suppose the following sequences list the nodes of a binary tree T in

porder and inorder respectively:

Preorder: G, B, Q, A, C,K,F,P,D,E, R, H.

Inorder: Q, B, K, C,F, A, G,P,E, D, H, R.

Draw the diagram of the tree.

Figure-7.16: A heap as a priority queue.
The operations on priority queue are same for the heap.
Summary: .

The concept of data structure tree is obtained from the concept of natural
tree, except that natural tree is a bottom-up figure, whereas the data structure
tree is a top-down figure. A tree is a collection of nodes that has a special
designated node called root node. The root node may have one or more child
nodes. When each node of a tree has at most two children, then the tree is
called binary tree. If each node of a binary tree has two children {except the
leaf nodes) then it is called full binary tree. If each level (except the deepest
level) contains all possible nodes and the deepest level contains the nodes in
as left as possible, then it is called complete binary iree.

There are three techniques of traversing a binary tree: pre-order, in-
order and post-order. The prefix pre, in and post represent the order, the root
node to be visited. In pre-order technique, first visit the root node then
traverse the left subtree in pre-order and then traverse the right subtree also
in pre-order. In in-order technique, first traverse the left subtree in in-order,
then visit the root and finally traverse the right subtree in in-order. In post-
order technique, first traverse the lefi subtree in post-order, then traverse the
right subtree in post-order and finally visit the root node.

In a binary tree, if the values of all nodes in the left subtree (left
side of the root) are smaller and the values of all nodes in the right subtrec
(right side of the root) are larger than the node value of the root, then it is
called binary search tree. Binary search tree is used mainly for fast
searching strategy.

If the value of each node in a complete binary tree is greater {or
smaller) than the value of its children, then it is called a heap. For greater
values of children it is called max heap otherwise it is called minheap. Heap
is used mainly for sorting strategy.

The data structure tree is implemented using array and linked list,

Data Structures Fundamentals kit

24, Consider the following tree

List the node s:quenceLﬂm will be ﬁ'ah:cmcd whnnN{ue use (i) Inorder

{ii) Preodrer (iii) Post order traversal techniques. 1
25. Write an algorithm to create heap from an arbitrary list of elements,
21‘.:2 Prove that the depth (height) D, of a complete binary tree with n nodes is
given by

Dy, = [logyn+1], where [+] is the floor function.
27. Construct a down-heap H from the following list of numbers:
44, 30, 50, 22, 60, 2, 55, 77, 55

28. Write reheapdown function for implementing heap.

29, D:Iw the binary search tree whasa elements are inserted in the following
order:

M 72 % 107 26 12 1[9‘2“1 25 51, 16 17 95 3§l
30. Consider the following tree

-

E.ist the node sequence that will be traversed when we use i) Inorder
i) Preorder iii) Postorder traversed technigues.

Chap.-T Tree 119
Problems for Practi Lab) Class :

Tree related problems

Problem 7-1: Take (store) 10 integers in an array. Consider the ammay as a
‘gomplete binary tree. Now print:

i) all the data in a row.

i) Print the data of any index and its children.

Print the data of any index and its parent. -

,frnhlem 7-2: Take (store) 10 integers in an array. Consider the array as a

‘complete binary tree. Now print: ~ ©

i) Print the data of leftmost path and rightmost path separately (from
root to leaf).

iiy Print the data all paths (from root to the leaves).

Problem 7-3: Take (store) 10 integers in an array. Consider the array asa
gomplete binary tree. Now print:

i) all the data using pre-order method.

i) all the data using in-order method.

iii) all the data using post-order method.

‘Problem 7-4: Draw a BST with 14 intcgers in paper (note book). Store the
data of the BST in an array. Now print:

i} all the data using in-order method.

Hints: the output will be in ascending order.

Problem 7-5: Create a linked binary search tree (BST) with 10 integers.
Print the data of the BST using in-order traversal method. You cannot use
any existing built in function that creates BST.

Problem 7-6: Add two additional nodes to the BST you have created for
blem 7-5. Delete a node that has two children in the BST and print the
data of the BST using in-order traversal method.

Problem 7-7: Create a heap (armay based) with more than seven integers.
Print data from any index and print its left child, right child and parent (if
any). You cannot use any existing built in function that creates the heap.

Problem 7-8: Add two additional data to the heap you have created for the

Data Structures Fundamentals

problem 7-7, Delete the root and print the data with their indices.

Remember afier addition and deletion you have to rearrange the data so that
the data are in heap.

Sample output: ;
index 1 2 3 4 5
data 90 70 82 55 48

Problem 7-9: Given more than ten arbitrary integers. Sort them using heap
sort algorithm. Print separately the data after heap creation phase and the
sorted data. Show the required number of data comparisons for sorting.You
cannot use any existing built in function that creates heap and/or sorts data.
Hints: Create a heap, swap the data and rearrange the data after swapping.

120

CHAPTER EIGHT

GRAPH

OBJECTIVES:

_ Identify graph ,
Describe how a graph can be stored in memory
Describe graph traversal methods
Identify minimum cost spanning tree
Describe Prim’s algorithm
Write Prim’s algorithm in algorithmic form
Describe Kruskal's algorithm
Write Kruskal’s algorithm in algorithmic form
Describe single source shortest paths problem
Write an algorithm for single source shortest paths

VY VYVYVVVYYVYY

B.1 Basics of Graph

‘A graph is a set of nodes (vertices) and edges. The node that holds data is
_ called vertex and the line connecting two vertices is called edge. If G denotes
a graph, G = (V, E) where ¥ denotes set of vertices and E denotes set of

edges.

Undirected Graph: If each edge of a graph is undirected [vﬁthnht
direction), the graph is called undirected graph. The undirected edge is also

is called dirécted graph.

Whighted Graph: If the value (cost) of r.av.ih edge is given, the graph is
called weighted graph. ' s

th: A path is a sequence of vertices where each pair of successive vertices
|8 connected by an edge.

Data Structures Fundamentals

122

Connected Graph: A g,mpllﬁ called connected, if there is a path between

each pair of vertices. ;

Cycle: A cycle is a path where first and last vertices are the same.

IR
38— NG, =)

Undirected Graph _Birected Graph

Weighted Graph Connected Graph

Figure-8.1: Different types of graphs

Graphs may be directed or undirected. In directed graphs, directions of edg
are given. P

g

A graph is stored in the computer's memory using the matrix (two
dimensional array). The matrix used to store graph in computer's memory is
called adjacency matrix. Two vertices are adjacent to each other if there is an
edge between them. If a vertex is adjacent to other, we put 1 in matrix on
their cross point. If thete is no edge, we i:nul 0 in the matrix. That means 4; =

1, if there is an edge between the vertices i and /. Otherwise, A =0, where 4
denotes adjaceney matrix,

-8 Graph e : : 123

(®)
LB Jel. D 1 2.3, 411 S
0 e HE R e
T TR P L3 O B R e T PR
R T R O T
T I R B

(a): Adjacency matrix of an {b): Adjacency matrix of & weiphted graph

undirected graph

igure-8.2: Adjacency matrix of dirécted and undirected graph

Vertices List of adjacent vertices
P 0O R T
Q F u
R P 5 T
5 U R
T P R u
U 8] 5 T

igure-8.3: An undirected graph and its adjacency list

(Graph can be stored (represented) as adjacency lists in compuler’s memory.
Since adjacency lists are variable in length, so linked list implementation
ill be cfficient for this type of lists. Linked representation of the Figure 8.3
1% shown in Figure 8.4.

Data Structures Fundamentals 14

FJFLQ]_HR|_HTN
Q_ﬁpf—_l-*L”N

(Chap.-8 Graph o G185

if (table[i].next = NULL), then, table[i].next = nptr,
else |

tptr = table[i]. next

while (tptr — next ! = NULL})

" _r‘ = o I =N TN ;r-wqmn

5 _H . r_H R N g . :

A A== N e
Figure-8.4: Linked representation of the adjacency lists 7, Seti=i+1;

B, Repeat step- 4 to 7 for necessary times
i i lists.
We can easily implement the above linked list using C/C++. 9, Output a linked adjacency

8.2 Graph Traversal (Search) Methaods |
There are two principal methods for graph traversal, which are as |

follows:

Algorithm 8.1: Algorithm to create adjacency list of a graph

1. Input a graph (information of graph) and take a variable, item

2. Declare vertex (node) and table of vertices il Breadth _F1rst Search (BFS)
i} struct vertex 2. Depth First Search (DFS)
{
char data;
node * next; |
} i
ii) vertex table [1......m], * nptr, * tptr; |
J.Seti=1

4, Create a table of vertices:
table [i].data = item;
table [i].next = NULL;

5. Create a vertex (node) with value:
nptr = new (vertex);
nptr — data = item;
nptr — next = NULL;

 Figure-8.5: An undirected graph

-

Data Structures Fundamentals . [26

8.2.1 Breadth First Search (BFS)

In breadth-first search, we visit a vertex first and search for the vertices that
are adjacent to this vertex. In later steps we visit every adjacent vertex
(adjacent to the first vertex) one by one and search for their adjacent vertices.
We continue this process until we visit every node in the graph.

Here, one important issue is that we need to store all the information of the
adjacent vertices (say, value of the vertices) that will be visited later after
visiting the current vertex. Therefore, we have to store the values of the
vertices to be visited lately in a queue so that we can track which vertex is to
be visited next. To traverse the vertices properly, we make a table (Table-
8.1). In first column of the table we have enlisted the vertex and its adjacent
vertices.

In the second column of the table we have shown the vertices stored in
queue. According to the Figure 8.5, we have visited the vertex A first and we
z‘fti:re two adjacent vertices W and P in queue. So, we have enlisted the
vertices A, W, P in first row of first column, and shown the vertices W, P in
first row of second column. In third column we have put the vertex, whose
adjacent vertices are already in queuc. So, we put A in fist row of third
column. As we know the vertex which added to queue first, get service first,
50 we traverse the vertex W now. We say traversal of a vertex is done if its
adjacent vertices are stored in queue. Thus we have enlisted the adjacent
vertices of vertex W in second row of the first column and stored the vertices
(U, R) in queue and put the vertex W in second row of the third column.

~ After that we visit the adjacent vertices of the vertex, P by storing them (the

vertices U and R) in queue and we say the traversal of the vertex P is done.
We have shown the progress of this traversal method in Figure 8.6{a).
Following the above method we traverse the other vertices of the graph. The
traversal sequences are shown in Figure 8.6(b).

127

Table-8.1: Breadth first traversal of the graph in Figure-8.5

Vertices visited Vertices in queue | Vertex traversal done
| AW, P Ww.P A
AW P, UR PR

A, W,P,U,R,O,L |UR,O,L
A W,P,UROLM|ROLM

shaded vertices).

re-8.6: Pictorial view of BFS

Data Structures Fundamentals

Algorithm 8.2: Algorithm for breadth first search
1. Input a graph, G
2. Create two empty lists Land T
3. Create an empty queue Q
4. For each vertex of G do
i) Take a vertex v from G
ii) Place the vertex v and its adjacent vertices in L
iii) Add the adjacent vertices of the vertex vto Q
iv}) Place the vertex vin T
5. Repeat the steps 6 to 7 until Q is empty.
6. Access a vertex w from
7. For each adjacent vertex of w, do
i) If it (adjacent vertex of w) is not in L, place it in L and add it to Q
ii} Place vertex win T
E. Output the traversal list in T
Comments: L is the list where we place the visited vertices and T is the list
where we place the visited vertices for which the traversal is done.

8.2.2 Depth First Search (DFS)

In depth-first search, we visit a vertex and search for the vertices that are
adjacent to the starting vertex. Then, we visit one of the adjacent vertices of
the starting vertex and find the adjacent vertices of current vertex. Now, we
have to visit one of the adjacent vertices of the current vertex. That is, in
depth-first search when a vertex is being visited and its adjacent vertices are
found, the very new vertex to be visited always be the adjacent vertex of the
previous vertex visited.

While visiting one of the adjacent vertices of the previous vertex, it is
obvious that information of the other adjacent vertex of the previous vertex
must be stored somewhere, so that we can visit them later. For this purpose
in depth-first search a stack is used to hold the information (usually vafues of
vertices) of the vertices. We proceed in the same way until we reach the
deepest vertex whose adjacent vertices (one or more) are already in the list
(stack) or already visited. In this way, all vertices in the graph are visited,

To traverse the graph in Figure 8.5 we make a table.

129

_}: scond column of the table). Since the adjacent vertex of A (v:ﬁices P and
W) are stored in stack, the vertex traversal is done, which is marked in the
third column of the table. So, we say traversal of a vertex is done, when its
djacent vertices are stored in the stack. Since we store the vertex, W in
k last, we accessed it first. That means, we traverse the vertex W by
loring its adjacent vertices, (vertices R and U) to the stack, In this way we
verse other vertices of the graph.

lable-8.2: Depth first traversal of the graph in Figure-8.5

Vertices in stack Vertex traversal done
PW
PR U
PR M
PR L O
PR L

PR

TR OECE >

lgure-8.7: Pictorial view of depth first traversal method (traversal
- sequences are marked by 1,2, 3, 8)

Data Structures Fundamentals 1 | ¥

Algorithm 8.3: Algorithm for depth first search
1. Input a graph, G :
2. Create two emply lists L aml T
3. Create an empty stack S
4. For each vertex of G do
1) Take a vertex v from G ——
ii) Place the vertex v and its adjacent vertices in L .
[i.i] Add the adjacent vertices of the vertex v to 8
iv) Place the vertex vin T .
5. Repeat the steps 6 to 7 until 8 is empty.
6. Access a vertex w from §
7. For each adjacent vertex of w do
i) If it (adjacent vertex of w) is not in L, place it in L and add it to §
ii) Place vertex win T '
8. Qutput the traversal listin T
Comments: L is the list where we place the visited vertices and T is the list
where we place the visited vertices for which the traversal is done.
8.2.3 Implementation of DFS & BFS using different data structure of
graph.
DFS:
DFS can be implemented with graphs represented as:
+ Adjacency matrices with complexity ®(F2)
= Adjacency linked lists with complexity @(}+E)
BFS: ' :
BFS has can be implemented with graphs represented as:
* Adjacency matrices with complexity 8{(F2)
* Adjacency linked lists with complexity @(V+E)

Usually, we prefer adjacency lists, since it u;ses considerably less memory

“when,

|E|<<]|V?].
There also exist some situations where adjacency matrix is better:
* Graph is “Dense” i.e., | E | =] Vi _
* Often need to check whether an edge exists from u to v

up.-8 Graph : 131

K3 Minimum cost spanning tree
Bpanning subgraph: A subgraph of a graph, which contains all the vertices

#f tree: A spanning trec is a subgraph (spanning subgraph) of a
which contains all the vertices of the graph and contains no cycle.
inimum cost spanning tree: [t is a spanning tree whose ¢ost is minimum,

_. e can build a spanning trec from a undirected connected graph, In a
anning tree the total number of nodes (vertices) will be same as the total
lumber of vertices in the graph. However, the total number of edges will be
one less than the total number of nodes (vertices). In minimum cost spanning

flgorithms to build minimum cost spanning tree. One is Prim’s algorithm
d another is Kruskal's algorithm, S

3.1 Prim’s Algorithm :
I 15 a method to build a'minimum cost spanning tree edge by edge. Since in
'mg tree total number of nodes is same as the total number of vertices in
graph, so at first we take the nodes (vertices) and at each stage, we select
vertex and an edge. When we choose a vertex and select an edge from the
yertex that has minimum cost among all the edges from the {chosen) vertex.
When we choose first vertex (the root of the tree), we consider the adjacent
ertices of the vertex associated costs. We shall select the edge that has

post. We shall select the edge with minimum cost again. To select an edge,

we have to check two things. One is, when we select an edge, we should
gheck whether any of vertices of this edge make another edge whose cost is
ess than the first ell:lgr:, Second i.s, we should not select an edge more than
gnce and the selected edge must not make a cycle. We consider the graph of
Figure 8.8 and show the stages of Prim’s algorithm 8.9.When we choose the
post vertices, we have to check the adjacent vertices from this vertex and
gelect the edge with minimum cost,

- 14)

gost of the edges of the tree must be minimum. There are two well known -

minimum cost. Then we choose another vertex and its adjacent vertices with

Data Structures Fundamentals

132

Figure-8.8: A weighted graph

®

(2) Selection of first edpge

@ ©

(e} Selection of third edge

® ®

; ®
®

D)

(1) Selection of second edge

®) et

(d) Selection of fourth edge
Here we rejeet the edpe (V5 V5,
since it makes a cycle

iap.-8 Graph 133

B} Selection of fifth edge We cannot select the ¢ ¢
* edge (Vi ,V4), it has been already selected (f) Selection of sixth edge
and we rcject (Ve V), since it makes a cycle

- {#} Belection of swmm#
re-8.9: Pictorial vmuﬁ-f stages Prim’s algorithm

orithm 8.4: ansﬁ]gmﬂun

Input a weighted connected g,raph G = (V, E). V is the set of vertices
and E is the set of edges

Create an empty list E;

Create a list V; which will initially contain the starting vertex, ie Vy = {
o}

or each vertex i of G do

1

A minimum-weight edge e’ = (v' | u) among all edges (v, u)

hthat v is in Vrand u is in V - V.

Data Structures Fundamentals 134

Ve=V U fu'};
Er=Er U {e'};
}
5. Output edge list of the spanning tree Er.

Kruskal's Algorithm

In this algorithm, we select the nodes (without edges) first. Tth we select
an edge whose cost is smallest among all the edge costs. Then we select the
second edge. The edge is chosen whose cost is smallest among the edge
costs except the first selected edge. We continue the process in this way.
When we choose a vertex with edge it should not make a cycle. In Kruskal
alporithm, initially it treats all the single nodes as trees. That gm:ané nitially,
there are v single node trees, if there are v vertices in the graph. When we
add an edge,

we merge two trees into one. By adding the edge one by one, finally we get a
single tree and the algorithm terminates.” As a result, we get the minimum
spanning tree.

® ® e L

{2) Step 1 (Select all the nodes) (B Step 2 (Select an edpe with minimun
cost (minimum smongt all the edges))

(g) Step 7 (S d

igure-8.10: Pictorial view of the stages of the Kruskal's algorithm.

Data Structures Fundamentals (R0

Algorithm 8.5: Kruskal's Algorithm

1. Inputa weighted connected graph, G = (V, E). V is the set of vertices
and E is the set of Edges

2. Create an empty list B¢

3. SontE in nondecreasing order of the edge weights wie;) =wlep) =... =
w(ei)
Set ecounter =0; k = (;

5. while (ecounter < number of vertices - 1)
{

k=k+1;

if (Er U { e } is acyclic)

Er=ErU{ex};

ccounter = ecounter +1 ;
" ;

6. Output edge list of the spanning tree Er.

8.4 Single source shortest paths problem

It is a simple traversal method that finds out the shortest path from a source
vertex to all the remaining vertices of a directed graph, G = (V, E) where V
is the set of vertices and E is the set of edges. In this method, at first we
compare the distance among the source vertex v, and those vertices those are
adjacent of vy and find out that vertex whose distance is minimum from
vo.We repeat this process until we traverse the entire vertex in the graph and
get the traversing cost i.e. the minimum distance.

The casc that should be considered here is, suppose if u and w are two
adjacent vertices of vgand traversing cost from v, to the vertices are x and ¥
respectively and traversing distance from wiouiszwherex >yandx >y 1
z. Then we have to traverse w from vy at first and then we will traverse u
from v, via w so that we can find the minimum distance. This case must he
considered for traversing all vertices.

' Chap.-8 Graph 137

We can use the single source shortest path algorithm as described below w

find out all minimum distances by traversing the graph.

1) At first, we create an adjncency- matrix cost[1:n][1:n]. It will be a n* n
matrix in which cost[i][j] = o if there is no edge between v; and v; and
cost(i](j] = x if the distance from v; to v;= x.

2) We use a status armay say S[l:n)], to keep track which vertices are

- already considered, for all vertex in the graph G. Initially, S[i] = false, 0

<i<=n.

3,;!. We assign S[vy] = true where vy is the source vertex.

'4) We take an array dist[1:n] for all vertex n in the graph G , and assign

dist[i] = cost [v][i] , 0 < i <= n. and assign dist]vg] = 0.

5) MWext, we choose a vertex v;= u, from those vertices not in § such as v; is
adjacent to the selected vertex and dist [u] from the selected venex is
minimum and assign § [u] = true. For each vj = w adjacent to u with
S[w] = false we will repeat Step 6 and 7.

) We compare dist[u] with dis [u] + cost[u][w] if we get positive result i.e
if dist{w] = dist[u] + cost{u][w] then we go to Step 7.

T) Assign disi[w] = dist[u] + cost[u][w].

8) Wé repeat the Steps 5 to Step 7 untill we find the minimum distances of

“"all the vertices from the source vy.

Example:

Let the given graph be

]« < 7

1700 1000

Figure-8.11: The given graph

>

- Data Structures Fundamentals . B 1

'dhap,-ﬂ Graph Sl 139

By using step- 1 ifl ; ; :
e e e G For vertex 4 first we compare, in Step 7 & 8, whether dist [4] = dist [6] +

cost [6] [4]. Here, dist[4]= 1500 and dist [6] + cost [6] [4] = 250 + 1000=

1 2 3 4 5 a 7 g
/- ; 1250. Here, we have found an altemative path from 5 to 4 which has a
1 a -\ horter distance than the direct one and we update the dist as, dist [4] = dist
il Ay [6) + cost [6](4] -
3 joop 8000 :
4 } 1200 0 F Z
5 ' 1500 O 250 We repeat the process for 7 and 8 for other vertices. Following the above
é 1000 : o 900 1400 process we get our desired output. In the following diagram the total process
7 0 1000 is displayed.
8 \ : rad ol ! W
‘/ Vertex 5
5 Distance
«Fi B . 3 H 3 . sclected
Fzgun.: 8.12: Adjacency matrix : & O . o
H 5!111: ; i i = pR #] i 500 0 250 W #
ere 5 is source vertex .So 5 [5] = 1 and dist [5] = 0 from Step 3 and G & F ' # 150 0 250 110 1650
Step 4 156) 7 # # il 1350 g 250 1% 1650
[56.71 TET [] # E:'ll:'.l 1230 1] 250 1150 1650
At first we check whether there is an edge from 5 to 1. From the adjacency (56,741 8 35 prf oS (12507 0 250 IS I6IC
matrix, cost [5] [1] =, so dist[1]=<0. 156.7448] 3 T3s0 150 Ms0 120 g 3sh IS0 1esd |
Geiasty | 2 1350 3250 80 1280 g 250 1150 1650
Next we check whether there is an edge from 5 to 2. From the adjacency .IS'E'?M'B'H R A =] ;m}. =

matrix, cost [5] [2] = e, s0 dist [2] = =,
Figure-8.13; Action of single source shortest paths
o

Then, we check whether there is an edge from 5 to 3. From the adjm:cm:y.

matrix, cost[5] [3] =0, s0 dist [3] = 0. * Alporithm 8.6: Algorithm for single source shortcsl paths

The algorithm of single source shortest path is given below:
In a similar way, we consider the distances of all other vertices from 5 and
build up the dist array. Input a Graph, G

2. Create the cost adjacency matrix COST[n](n] where n is the number of
 vertices
3. Create two empty list dist and §
v is the source vertex
5. foreach vertex im G

{

Mow, using Step 5, we choose the vertex that is of the least distance from 5.

From the dist array we get that the vertex is 6. So we choosc 6 and set S [6]
=1.

In Step 6, we will determine all the vertices i adjacent to 6 with 5[i] = 1,
which are 4, 7, 8. Then for 4, 7 and 8§ we will repeat Step 7 & 8. S[i] = false;

dist[i] = COSTIV](il;

Data Structures Fundamentals

6. S[v] = true; dist[v] = 0:
7. for (num =2 to n-1)do

{

Choose u from among those vertices not in S such that dist[u] 15

minimum;

S[u] =true; /Putuins
for (each w adjacent to u with S[w] = false) !
!
if (dist[w] > dist[u] + cost[u][w])then
dist[w] = dist[u] + cost{u][w]);
H
h

8. Qutput the shortest path dist of all vertices from the single source v,

Summary:

Graph is a set of nodes and edges. The node that contains data is called
vertex and the line connecting two vertices is called edge. According to the
direction presented in an edge, there are two types of graph: Directed graph
and Undirected graph. When each edge of the graph is assigne:d:\wmc,
then it is called weighted graph. In a graph, if there exists a path between
each pair of vertices, then it is called connected graph.

There are two principal methods of traversing a graph: Breadth First search
(BFS) and Depth First Secarch (DFS). Breadth first search is a simple
strategy in which a node is visited first, then all the successors of the
are visited next, then their successors and so on. In general, all

node

= . the nodes are
visited at a given depth before any nodes at the next level are visited, Depth

first search always visits the deepest node that means the search proceeds
immediately to the deepest level of the graph, where the nodes have no
successors. In this way, all vertices in the graph are visited.

L4

Chap.-8 Graph -

From an undirected connected graph, we can build a spanning tree. A
spanning tree is a subgraph that has no cycle. The spanning tree of total
minimum cost is called minimum cost spanning tree. To build minimum cost
spanning tree, the graph must be weighted graph. There are two well known
glgorithms to build minimum cost spanning tree: Prim's and Kruskal's
algorithms. Prim’s algorithm is a method to build a minimum cost spanning
tree edge by edge. At first all the vertices are taken and at each next stages,
we select a vertex and an edge from that vertex whose cost is minimum
among all the edges from the (chosen) vertex. Then we choose another
vertex and proceeds similarly. In Kruskal's algorithm, first an edge whose
cost is smallest among all the edge costs is selected, then we select the
second smallest cost assigned edge and next the third, fourth and so on. In
both Prim's and Kruskal’s algorithm in each stage we check so that it does
not make a cycle.

The data structure graph can be implemented using aray and linked list. The
difference between tree and graph is that tree contains no cycle whereas
graph may contain cycle. That means all trees are graph but all graphs are
not trees.

Questions:

1. Define graph with example.

2. How a graph can be stored in computer's memory 7 Explain with
example.

3. Define directed, weighted and unconnected graphs. Give examples.

4. All trees are graphs, but all graphs are not trees. Explain this statement
example.

5. How many ways a graph can be traversed ? Discuss in details about
breadth first traversal techniques.

6. Definc adjacent list and adjacent matrix of a graph.

Data Structures Fundamentals 142

i

B.
9.

Define a graph. The daily, flights of an airline ccﬁpany appcar' in the
Fuiluwmg figure. CITY lists the citics, and ORG[k] and DEST[k] denoie
“the cities of origin and dcstmau::m, respectively, of the fight

NUMBER[k], (i) Draw the corresponding d1r=r:.ted graph of the data, (i)
and give the adjacency structure of I:]].E grﬂph

NUMBER ORG DEST

1 R 1) 2 3 _1
Jessore ;
- 702 3 2
; 2
Chittageng
: j 705 5 i
. yety 13 .
Sylhet 708 3 4
4
: T 2 5
Rajshahi
5
712 5 2
Dhaka
6 713 5 1
7 Ti5 1 4
B 717 5 4
NE . T g
% \H\H_ _,f’f 5

What is the difference between a tree and a graph ?
What is the difference between breadth I' rst search and depth first
search? Show with example.

10. Describe the stages of Prim’s algorithm with example,

11.

Describe the stages of Kruskal's algorithm with example.

143

Problems for Practical (Lah) Class

Graph related problems
blem 8-1: Given a graph in Fig. 8-1, create an adjacency matnx for the
ph. Print the adjacency matrix.

16

Fig. 8-1 _
blem 8-2: Given a graph in Fig. 8-2, create an adjacency matrix for the

graph. Print:

i) the adjacency matrix ii) the list of vertices and adjacency list with
edpe cost of each vertex.
or ii

g Input: Enter vertex: A (from keyboard) i
Outpu: B 10 D 12
Input: Enter vertex: B
Output: C 7 A 10
And so on.

15
Fig. 8-2

roblem 8-3: Given a graph in Fig. 8-3 and create linkm:l_ adjacency lists
ith edge cost of each edge and print the data of the linked list.

Data Structures Fundamentals 144

Problem 8-4: Given a graph in Fig. 8-4 and create adjacency matrix of the
graph and detect the cycles of the graph.

CHAPTER NINE

SEARCHING AND
SORTING

BJECTIVES:

O Searching:

Describe linear searching

Write an algorithm of linear searching
Describe binary searching

Write an algorithm of binary searching

v VvvYYy

O Sorting;

Describe the process of selection sort
Write an algorithm of selection sort
Describe the process of insertion sort
Write an algorithm of insertion sort
Describe the process of merge sort
Write an algorithm of merge sort
Describe the process of quick sort
Write an algorithm of quick sort

YV YY N Y iy

'_ Searching 9"

hing means to find out or locate any element from a given list of
ments. In this chapter we have described methods (algorithms) of
ing and sorting. At the end of each algorithm we have analyzed the
ithm, i.e., we have estimated the approximate execution time and space
uired for the algorithm. In other words we have shown the complexity of
algorithm. To identify or locate an element or position of the element
a list of elements is called searching. Usually, there are two types of
hing

1. Linear Searching and

ii. Binary Searching

Data Structures Fundamentals . iy [

9.1.1 Lincar Searchmg %'_ b WH EL A

In this method we search the I:arget elenimt one Ety one’ un%[‘we find the
element or we go beyond the list. BT
Suppose that we are given a !lst nf elements ;md a target element. We have to
determine whether the target element exists in the list or not and when it is

found, the location of the element will be output. In linear searching, at first

we take an element from the list and compare it with the target element. 1f

the first element is the target element, then we have found the element and
the searching is successful and completed. On the other hand, if the first
element is not the target clement, then we take second element from the list
and compare it with the tarpet element. Tf at this staf,c the second element is
the target element, then the sean:hmg is successful and cumplclod If the
second element is also not the target element then repeat the process as for
the first element and the second element. Thus we shall repeat the process
until we find the target element in the list or we go Ef:yﬂn_t_i the list.

Suppose that we arc given a list of numbers as follows:
17 12 18 5 7 8 10
We have to find out whether a number, 7 is in the list or not.

index —pe 1 2 4] 4 3 G = ==

List(] w12 [t o8 7 & WA b L)1) =002 N
17 & b} Is Lire[2] = x 3 M.
17 CE M f s L 3] = 0 F N
17 S 10 1= _j'__w- {£] = x7 Mo,

E p Fewarimn =4
o B 10 s.l'.rrﬂ|5'|-1-":’vu
1 op. Dam found:

Figure-9.1: Pictorial view of linear acarchmg {shaded items showed the
: “searching sequence) '

-9 Searching and Sorting 147

Algorithm 9.1: Algorithm for linear searching
|. Input a list and an item (clement to be found)
' A[l...a];

item = x;

location =0

E.‘ Search the list to find the target element
for(i=1;i =mi=i+1)

{

if (A[{] = item)
i
print *“Found ;
location =i
Stop searching;
H

}

. if (i = n) print “Not Found ™;
4. Output : “Found" or “Not Found™,

9.1.1.1 Complexity for litiear searching

R S T T o
n

It average case, time complexity =

_n(n+1)
2n
= -1- n+ -1-
- M
= O(n)
the time complexity = O(n)
econdition (prerequisite) for binary searching is that the elements must be
nged either in ascending or in descending order.
blem: Given a list of i:lntn'i:gl'ﬂnmts arranged in ascending or descending
tler, locate (find the position of) 2 pa:hcullr{target] element from the list.
brmn-1 |
- 4

Data Structures Fundamentals

9.1.2.1 Process
Suppose that we are given a list of elements arranged in ascending o
descending order (which is the prerequisite of binary searching) and a target
element. In binary searching, at first we have to identify the middle elemem
of the list and compare this middle element with the target element. If middle
element is the target eclement, then the searching is successful and
terminated. On the other hand, if the target element is smaller than the
middle element (for ascending data), we have to perform searching on lefl
half of the list in the same manner which was done for the whole list. We
repéet the process until the target element will be found or the (searching)
process will be completed. This process can be stated with points as follows.

{ _
ﬁ. In binary searching process, at first the middle element of the list is
identified. ;

Middle index = (1* index + Last index) /2

2. After that, the target element is compared with the middle element
of the list.

i.

1.

iii.

if the middle element is the target element, then the
process is completed and terminated.

otherwise, if the target element is smaller than the middle
element, we have to search the target clenwnt_ in the lefi
half of the list in the same manner which is done for the
whole list.

on the other hand, if the target element is greater than the
middie-element, the target element has to be searched in
the right half.of the list in the same manner which is done
for the whole list.

We can explain the binary searching process using symbols as follows.
Let the list of the elements arc —
a., e, a;a s PR (e and.r is mcmrget e!emmlt.

%,_Then we shall follow the su:ps given below fcnr binary searching:

Ccmprutc nuddle mdcx_. mid = {ﬁrsr +lasf) 1 2
Ifx= Ay thm_the element hns hecn foumi

s
i

Chap.-9 Searching and Sorting 149

3. Ifx < a. then we have to search the tarpet element in ay, a3,
@3y wee s seny Big—q @nd we will search the target element using
Step-1 and Step-2, -where we shall vse (mid — 1) instead of Last.

4. Ifx > apis then we have to search the target element in &g,
Diides TouidtBy +=n ey Gy @0d we shall use the Step-1 and Step-2;
where we will use (mid + 1) instead of firse.

5. Repeat the process until we find the target element x, or we go
beyond the list. 4 A

Algorithm 9.2: Algorithm for Binary Searching (pseudocode) 6
1. Input A[1...m], x; //4 is an array with size m and x is the target
element
2. first=1,last=m;
3. while (first <lasi)
{
mid = (first + last)/ 2;
(i) if (x = A[mid]), then print mid; // target element =
break (stop searching); A[mid] or target
Melement is in index.
; mid.
(ii) else if (x < A[mid]) then last = mid - 1;
(iii) else first= mid +1;
:)
4, if{first > last) , print “not found™;
5. QOutput: mid or *not found"

Example:

Suppose that we are given a list of numbers as follows:

17 19 28 30 45 55 58 61 63 67 72 76 B0 B89
and we have to find out 19 from the list.

Data Structures Fundamentals 150
index —= 1 2 ¥ 4 5 5 7. & 9 w11 12 13 M
List[] 17 19 28 30 45 55(CB8)61 63 67 72 76 80 B9
I S o4

19 = Listjmid]? Mo, . ;
:sr-:mﬂﬂe] J? Mo : : n'.mlidtrﬁl:lmt

17 19 30 45 55 58 61 63 67 72 T6 80 B89

A, 2
DI ittt

30 45 55 58 61 63 67 72 Te 80 B9

19 = Lstfomid]? Yes. (Print 2)
Seo, F.Imsenrfn'h.rbi dm:ntfwrdhﬂnlht

1'?23 30 45 55 58 61 63 67 '.-'2 76 B0 E’S‘
Figure-9.2; Pictonial view of binary searching

9.1.2.2 Number of comparison to search the target element
Suppose, there are n elements in the list
Let i = 2" then k= log; n.

1 , Time complexity = O (fog; n)
orting 0 '

To arrange a list of elements (data) in ascending or descending order is
called sorting. There are two types of sorting —
i. Internal Sorting and
i External Sorting
\9/24 Internal sorting
The method (algorithm) which sorts a list that is small enough to fit entirely
in primary (internal) memory, is called internal sorting.
9.24 Externl sorting @
'l'lm method (algorithm) which sorts a list (file) that can not fit entirely in
ptimary memory, that means to sort the entire list the method uses external
memiory, is called external sorting. :
9.2.3 Classes of internal sorting
Exchange Sort: Selection sort, Insertion sort, Bubble sort
Divide and Conquer Sort: Merge sort, Quick sort
Tree Sort: Heap sort, Toumamient sort
Non - comparison based Sort: Radix sort, Bucket sort etc.

Chap.-9 Searching and Sorting 151

9.2.4 Selection sort

In this method, at first we selc::t (find) the smallest data of the list. After
selecting, we place the smallest data in first position and the data in first
position is placed in the position where the smallest data was. After that we
consider the list except the data in the first position. Again we select the
{second) smallest data from the list and place it in the second position of the
list and place the data in the second position, in the position where the
second smallest data was. By repeating the process, we can sort the whole
list. Using steps we can write the method as follows.

i. Given a list of data. Find out the smallest data from the list. Place the
smallest in first position and the data of the first position in the
position of the smallest data,

ii. Repeat the process for the list except data in first position, and so on.

smallest
17 12 18 é— 7 8 10
sinallest
18 17 6 B 10
- .
Bl
considerable list

smallest
17 12 10
e

e
eonsiderable list

5 7 8 10 12 1 18 korted List

Figure-9.3: Pictorial view of selection sort

Algorithm 9.3: Algorithm for selection sort 6\
1. Input Armmay A[1...... 1]
2. (i} for(i=1ton-1)

{

Data Structures Fundamentals 152

small_index = i;
(ii). for(f =i+ 1tom)

{
if (A[f] < Alsmall index]) then small_index =j:
t ! end of second for

temp = A[i];

A[f] = A[small index];

A[small index] + temp;

Y . f end of first for

3. Output: sorted list.
Comments: A4 is an array of size n, where the data are stored and sorted later.

9.2.4.1 Complexity of selection sort [

For first phase, number of companson is n-1; second phase, number of
comparison is n-2; third phase, number of comparison is #-3 and so on.
Then

+

No. of comparisons = (n-1) + (n-2) + (n-3)+ +1
2 2 2

Therefore, time complexity = O(n’)

9.2.5 Insertion sort

In this method, we take the data of second position first and compare it with
the data of first position. If the data in the second position is smaller than the
data in the first position, then we shift the data in first position to the right (to
the second position) and insert the data of second position in the first
position. Otherwise the two data remain in their own positions. After that we
take data in the third position and Ehmpam it with the data in the second
position. If it is smaller than the data“in_the-second position, then we
compare it with the data in the first position, If it is also smaller than the data
in the first position, then we shift the two data to their right and place the
data of the third position in the first position. In case if the data of the third
position is smaller than the data of the second position and greater than the
data of the first position, we shift the data of the second position to its right
and the third data of the third position is inserted in the second position. By
repeating the process for the data in the forth position, fifth position and so

t

Chap.-9 Searching and Sorting 153

| _ :
' pn, we can sort the whole list. Using steps we can describe the process as

follows.

i. Given a list of clements (data). .
ii. We have to insert a data into its correct position by moving all data
(before it} to the right (that are greater than the data which is being

considered at this moment).
iii, By repeating Step-ii for all considerable data we can amrange the

whole list in ascending order.

T 18 5 7 8 10
LI ;
I 12 < 177 Shift 17 to right.

o T
e
Is 18 < {17, 12} 7

"z 17 1" 7 8 10
18,17,12] 3
b ! —‘—_Jsr.i& {1217, 1B} to

"5 1z 17 B &

Is7< (16,17, 12,507 i ,
7< (18,1712l md 7> st {12, 17, 18} ro

5 7 12 17 18 . "
Tnseet 7 after 3 {at blank g -
18
|— 5 = g 10 1z 17 Somed

Figure-9.4: Pictorial view of Insertion Sort

. According to Figure-9.4 the insertion sort algorithm rearrange data as
follows: L o
i We select item number two (which is 12} and compare it with the
jtern number one (which is 17) and check 12 < 17; the answer is yes,
then 17 will be shifted right and 12 will be put in the place of 17 (first
position). '
i, Next we select the item number three (which is 18 now). Check 18 <
17: the answer is no, so the list will remain as it is.

Data Structures Fundamentals 15
q

i N:x_t we select the itep_'g number four {which is 5) and compare it with
the |.1‘em number three (which is 18), check 5 < 18; the answer is yes.,
Again “.re check 5 < 17, the answer is yes. Again we check 5 < 12, the
answer 18 yes. So, the items 12, 17, 18 will be shifted right and 5 will
be place in first position, which is free afier shifting.

iv. By repeating the process we get the sorted list.

aﬂ\Algurithm 9.4: Algorithm for insertion sorting
L. Input Aray A[l...... n)
2, (i)for(f=2ton)
{
key-value = A [
i=(-1);
(ii}. while (f > 0 and A[7] > key-value)
{
AL+ 1] — A[;
i=i-1;
} i end of while
Afi + 1] +— key-value;
} fend of for
3. Output: sorted list.

9.2.5.1 Cm_nple:gity of insertion sort
No. of comparisons=1+2+3+
_nln <l) .1 b2 1
= i r — —
35 v g Ay L
Therefore, time complexity = O(n®) ™~___—

s T (0=1)

hap.-9 Searching and Sorting 155

,2.6 Bubble sort

Bubble sort is a simple sorting algorithm. In this method, we at first compare
the data element in the first position with the data element in the second
position and arrange them in desired order. Then we compare the second
data element with the third data element and arrange them in desired order.
The same process continues until we compare the data element at the second
last and last position. This is the first phase (phase-1) of this method. At the
next phase, we repeat the procedure applied at phase 1 with one less
gomparison, that is now we stop after we compare the data element at third
Jast and the second last position and arrange them in desired order. Similarly,
at phase 3, we repeat the procedure applied at phasé 1 with one less
gomparison, that is now we stop after we compare the data elcment at the
fourth last and the third last position and ammange them. This process will
continue and end at the last phase when we will compare only the data
lement at the first and the second position and arrange them in desired
order. Given a list of data elements Af1], Af2]...., Afn], we can describe the
bubble sort algorithm as follows:

i, At first we compare Af1] and 4f2] and arrange them in desired order so
that AfI] < Af2]. Then we compare Af2] and A/3] and arrange them so
that Af2] < Af3]. We have to continue this process until we compare Afn-
1] and Afn] and arrange them so that Afn-1} < Afn]. (we can observe here
that phase 1 requires n-/ comparisons)

ii. We repcat phase 1 with one less comparison; that is now we stop after we
compare and rearrange A/n-2] & Afn-I]. (so this step requires n-2
COMmparisons)

jii. We repeat phase 1 with one less comparison than phase 2; that is now we
stop after we compare and rearrange Afn-3] & Afn-2]. (so this step
requires -3 comparisons)

iv. At step n-1 we compare only A/ 17 with 4f2] and arrange them in desired

order so that Af1] < Af2].

After n-1 phases the list will be sorted in increasing order.

Data Structures Fundamentals 156

0 27 85 &6
Is 32 < 517 Yes. No
32 . 85 66
Is 51<27Mo. Sn Interchange)
2t . 0 66 ?‘ Phase 1
I: 51<857¥es. No
32 27 51 . ‘
Is B5<667No.5o Interchange
32 SR | 66 85)
o 51 66 . 85)
Is 32 = 277 No. 5o
7 o ' 66 BS P Phase2
Is 32 < 517 Yes. No
: @ @ -
o

Is 51 -'-66'*‘1’&5 Nu

®« « =
s 27 < 327 Yes. No P
" @@ «
Is32 = 517 Yes. No
0 @ 66 85 Phase 4

527 <317 Yes. No

Figure-9.5: Pictorial view of bubble sort

According to the Figure 9.5 the
follows:

i. At phase 1, we select the first data 32 and the second data 51 and compare
them whether 32<51, the answer is yes, so no interchange is needed. Then,
we select the second data 51 and the third data 27 and compare them
whether 51<27, the answer is no, so interchange is made. Similarly, we

~ sclect the data 51 and 85 and compare them whether 51<85, the answer is
yes, 50 no interchange is needed. Then we select the data 85 and 66 and
compare them whether 85<66, the answer is no, so interchange is made.

bble sort algorithm rearranges data as

-9 Searching and Sorting 157

At phase 2, we select the first data 32 and the second data 27 and compare

select the second data 32 and the third data 51 and compare them whether
32<51, the answer is yes, 50 no interchange is made. Similarly, we select
the data 51 and 66 and compare them whether 51<66, the answer is yes, 50

no interchange is needed.

. At phase 3, we select the first data 27 and the second data 32 and
‘compare them whether 27<32, the answer is yes, so no interchange is
made. Then, we select the second data 32 and the third data 51 and
compare them whether 32<51, the answer is yes, so no interchange is
made.

, At phase 4, we select the first data 27 and the second data 32 and
compare them whether 27<32, the answer is yes, so no interchange is
made.

rithm 9.5: Algorithm for bubble sort

1. Input Data[l....n]
2. fork=l tondo

i
Setst=1;
while (st =n-k)
{
if (Data[st] > Data[st+1])
Interchange (Data[st] and Data[st+1]);
Set st = st+1;
}
}

3. Output: sorted list
.6.1 Complexity of bubble sort
No. of comparisons = (r-1) + (r-2) + ...
_n(n-1)
R

3
n

=— +0(n
> (

+2+1

=0 ().
Therefore, time complexity = O (n%).

them whether 32<27, the answer is no, so interchange is made. Then, we

Data Structures Fundamentals

I 54

27 Merge Sort

Merge sort is a divide and c.nnquer method. It works by dividing the list inio
parts, sorting the parts and merging them together.

Merge sort is a recursive procedure {ﬁmction}. If a function calls itsell
tepeatedly, then the function is called recurswr: function. In merge sor, wo
divide the list into two parts. After getting two lists {parts), we divide each
list into two parts again. We will repeat the division of the lists until we gel s

single element in each list.

After that the merging phase will start. That means we shall merge each two
lists into one. By repeating the merging process, at last we will get a single

sorted list,

A disadvantage of merge sort is that it requires extra spaces (array) for

merging.

engprat List bl I

2

[Fleliisiv]

divisien Pﬁ: bI I

2

| T

z_|
|

end of division]

TN, stams .{ 2 I

—I-‘ Conguer

[mierying)

|
|5|2“ |5“'13||_9F?|rpnl;m=ﬁng
| EN N I T
o R S I | I
i A | N N A
|

santed Ese ﬂ_1

2

f

4

[s T e To

i

Figure-9.6:Pictorial view of merge sort

; 159
n.-9 Searching and Sorting

L
n
k]
o

2l4|ﬁ|1lunl
I
b

A
----- fasPlil=Q[]D :
)
k
P”l P | 4 | [I 7 t Qill 3 I H | ° I W_I
14

i3
ml-:"l":-l 6 | .1 | o fsmfuis dad |]:n*|
Soncitit | 2 |3 l gl & 7] 9 [0]

m=(+N/I2 i
merge_sort (A, f, m);
merge_sort (A, m + 1,7);
Merge (A, f, m, I);

} /f end of if

Data Structures Fundamentals 1) hap.-9 Searching and Sorting 161

Comments: Here 4 is an array, f is the first index and Lis the last index

Merge procedure (function) is called within the merge_sort , which is writien
below.

Merge (A, fim,)
{
Take an armay T[1 ... [];
i=fij=m+1;k=Ff
while (i =m andj =0
{ i o
if Al{] =A[7]. then T[k] +— A[{];i=1+1;
else T[k] — A/}, j=j+ 1;
Hfend of if
k=k+1;
1 flend of while
{{copy rest of the data
if (i = m) then
- for(b=jtol)do
i
TIK] < A[b]; k=k+1;
}
else for (b=1ito m) do
: {
T[ﬁ:]f—ﬂ[b};k=k+ 1;

For n> 1 we can write

T(n) = zT(i;-) +n
- 2(27‘[%) +2)+n
b 4_1"(%} +2n

H
= 22T(2—2]+2n

H "
=4(2T| = |+ =)+ 2
[T[B]+4) bl
=37’(f~)+n+2n
3

t i
} /fend of function s e
9.2.7.1 Analysis of merge sort L 25 T[-Er-] =T()]and n=]
If the time for the merging operation is proportional to n then the computing 2!
time for merge sort is described by the recurrence relation =an+nlog,n
1) o=1
\\ [T)=a, 2*=n, k=log,n]
T(a= paiie '
T(n)=0(nlog, n). .
2T nf2)+u 2>1 {n) [o <&)

When n 1s a power of 2, n = 2" we can solve this equation by successive
“substitutions. '

Data Structures Fundamentals _ Ia?

@9.13 Quick Sort

Quick sort is a divide and conquer method. In this method one element is to
be chosen as partitioning element. We dividg the whole list of data into two
parts with respect to the partitioning element. The data which are smaller
than or equal to the pértitfcmn’ng element, remain in the first sub-list or first
part and the data which are greater than the partitioning element remain in
the second sub-list (second part). If we find any data (in the first part) which
is greater than the partitioning value that Will' be transferred to the second
part. In the second part, if we find any data which is smaller than the
partitioning element, that will be transferred to the first part. Transferring of
data have been done by exchanging the positions of the data found in first
part and second part. By repeating the process, we can sort the whole list of
data. See pictorial view in Figure 9.8,

ap--9 Scarching and Sorting

163

2 1 N 0 I A K N e

o [+ T7]

FEL el oo e
o -

. 4u|zu|1u|3:ij?|m|m|mf99|9n|1ﬂ
| F

i=j

%0 m!m|3c||:|~:1|60fﬂﬂ|”J”|’”H~Ei§[1}.hﬁl)

fe
p A[1] and Afj):
m|m|3n]4n|5n|m]an[99!9nim|

i i

pivat pivot

wjw]|n|o|[w]o[m]n][w]n]
A partition partition

| 20 | 1w | 3 | 40 50 60 | 80

83 O EX Y [D N Y K X
o] [@]=]»]»]=]
partition partitiod pariton
][]

N 3 Y B Y 3 N Y
‘m[m"wi;a!

jgure-9.8: Pictorial view of quicksort partitioning

|mm|3u

-12

[_i]zulmlmlwisnl?|m|w|w}m]m&m;vm=m1

Data Structures Fundamentals 164

Algorithm 9.7: Algorithm for quick sort

Quick_sort {f,)

{

if(f<0)
{
j=makepart (a, f, [+1);
Quick_sort {f,j—1):
Quick_sort (7 + 1,);
H

}

makepart (a, first, last)

i
part_value = alfirst); i = first; j = last;

do
{
do
{
i=i+l;
} while (a[i] <part_value);
do

{
8 il e
} while (a[{] > part_value);
if (i <) then interchange (a[{], al/1);
b while (7 =7);
alfirst] = aljl; alj] = part_value,
return j; \
}

Comments: Here, first is the ﬁ]}‘ind_cg;_.and last is the last index; .and a s
the array which holds the list of data. And part_value is the partitioning

- Chap.-9 Searching and Sorting 165
element (first element for first iteration), Jirst is the first index and las is the
Inst index for each part.

9.2.8.1 Analysis of quick sort

Let us consider 7{n) be time complexity with respect to the number of
Lompatisons in average case.

T{n]=n+1+li{T(f—l]+T{n—f]} PR R 4 |

1
(n+1) comparisons is required for first round, — is the probability to
n

se partitioning element. Afier partitioning, if i —1 elements are in one
then # —i elements are in other part.

Vote that, 7(0) = T'(1) = 0. By putting the value of i = 1, 2, 3, n, the
quation (1) can be rewritten as follows:

(n}= n+1+E{T{U}+T{l)+ o+ T(n=1)}

Itiplying both sides by n we obtain

T(n)= n(n+1)+2{T(0)+ T(1) + .., +Tm=1)) L0
eplacing n by 7 —1 in (2) we get

=T (1 —1)=n(n =)+ 2T(O)+T() + ... +T(n-2)} .
ibtracting (3) from (2) we can write
nT(n)—(n-1DT(n-1)=2n+2T(n-1)

1T (n) = (n =T (n—1)+2n+2T(n—1)
nr(n)=T(n-1){n—1+2}+2n

- (2)

- (3)

Data Structures Fundamentals

Repeatedly using this to substitute for Ifn - 2), Tin-3),...weget
T(n)=T{n—2)+E+ 2
n+l n—1 n n+l

i T(n—3) B 2 g _2_ 2

+
n=-2 n-1 n n+l

_T(n-4) 2 L 2 +E+ 2
" n=3 n=2 n-1 n n+l

el - + - ks
n-(n-2)} {n-@m-3} H-(m-49}
2
+—t—
n n+l
2
2 3 4 n n+l
|
.—_@1-2('1-4‘14'. +-_"')
2 3 4 n+l
Tﬂ) n+]l
:—-—+2. -_
2 ,ch:x
n+l
sanel
x=3x

i+ ntl
Here zi < j icﬁ: =log,(n+1)-log,2

x=3 X 2

Therefore, &H: E_g[lug, (n+1)- lc-g,E]
H+ 7

T(n) < 2(n+1)[log, (n + 1)~ log, 2]
T(n)<2nlog,.n+...
T(n)=O(nlog, n)

Chap.-9 Searching and Sorting 167

- That means, the quicksort algorithm takes @ (n log, n) time in average case.
On the other hand the worst case time is O (n°).

Remember that merge sort takes O (n log; n) time in average and worst case,
whereas quick sort takes @ (n log, n) time in average case and @ (#°} time in
‘'Worst case.

External sorting is required when the number of records (data) to be stored is
ger than the computer can hold in its intemal (main) memory. Now-a-
s, to sort extremely large data is becoming more and more important for
large corporations, banks and government institutions. External sorting is
(quite different from internal sorting, even though the problem in both cases
i5 to sort a given list of data into increasing or decreasing order. The most
common external sorting algorithm used is still the merge sort.

n external sorting method, at first the sorted runs (sorted sub-files) are
produced, and then the sorted runs are merged to produce single run which
gives us a sorted file (list of data). The runs can be produced using any
al sorting algorithm like quick sort.

us consider that we have to sort three thousand records R,
Rj, R 000 and each record is 20 words long. It is assumed that only one
thousand of the records will fit in the internal memory of our computer at a
ime. Now this data can be sorted in the following ways. Suppose the runs
aire written in different files on a disk. According to our example there will
be three runs and let there are three files as follows

file-1: R;, R;, Rj,.........,R;mﬂ
file-2: R;m:, R;m,"n.,R;mm
file-3: Ri‘ﬂﬂh Rm},,Rm

Data Structures Fundamentals ' 16

Now, we shall produce a run by merging the file-1 and file-2 and these will
write in file-4. Again we merge the file-3 and file-4 and produce a single run
which may be written to file-1.

file-4: R;, RJ,..”......,R;m
file-3: Rzmj, .,..R_{m
file-1: R_,l. R}, von s ens P3O0

During merging phase we shall read some records suppose 500 records from
file-1 and 500 records from the file-2 and merge them. Merging file will be
written to file-4. Again we shall read the last 500 records from the file-1 and
500 records from file-2 and merge them. The merging records will be written
to file-4. Similarly we merge the file-4 and the file-3.

Summary:

To identify or locate an element or position of an element from a list of
elements is called searching, Usually there are two types of searching:
Linear and Binary. Linear searching does not require the elements to be i
sorted order, whereas the binary searching must requires it (sorted order).

To amange a list of clements in either ascending or descending order 14
called sorting. There are two types of sorting according to the requirement
of memory: Internal and External. Internal sorting sorts the list that is small
enough to fit entirely in primary (internal) memory whereas external sorting
sorts the list that is not small enough to fit entirely in primary memory, that
means it uses external memory to sort the entire list. There are various types
of sorting methods: -Selection, Insertion, Bubble, Merge, Quick, Heap,
Toumament, Radix, Bucket Sort etc.

Questions:

1. Compare linear search and binary search.

2. Explain the binasy search method with example.

3. Show that the complexity of binary search algorithm is [logsn], where n
is the number of elements:-—

4, Prove that the average case complexity of linear search algorithm is

- Chap.-9 Searching and Sorting 169

§. Write an algorithm to find out a number from a list of given numbers.
6. Write binary search algorithm and explain it with example,

; What is sorting?

8. Explain insertion sorting method with example.

9, Show that the complexity of merge sort is O (nlog,n).

i" 0. Write an algorithm for quick sort. _

1. Sort the following numbers in ascending order using selection sort
algorithm. Show each step.

28, 53,32, 84, 46, 92, 14, 63

12. Find out the complexity of selection sort algorithm.

13, Write down the algorithm of merge sort and show its complexity,

4. Write an algorithm for insertion sort and show its complexity is O (n).
5. Describe the process of quick sort with example. Show its complexity.
16. Write an algorithm for selection sort.,

8. Write the algorithm for bubble sort. Show its complexity.
19. Show with example how data are partitioned in quick sort. Show the
complexity of quick sort in average case.
0. Define internal and external sorting,
21. Show the steps on selection sort to sort the following data in descending
order,
(77,33,44, 12, 88,22 66 & 95)
What are the basic differences between quick sort and merge sort ?
Show the steps in bubble sort algorithm for the following data:
32, 51,27, BS, 66,23, 13, 57
4. What is extemnal sorting? Explain with example.

Data Structures Fundamentals | Tih

Problems for Practical (T.ab) Class
Sorting and searching related problems

Problem 9-1: writc a program to sort some random data using selection sort
algorithm. Hints: generate random data and take them in an array and sort
them. Condition: you cannot use any existing built in function for sorting
algorithm.

Problem 9-2: write a program to sort some random data using insertion sort
algorithm. Hints: generate random data and take them in an armay and sort
them. Condition: you cannot use any existing built in function for sorting
algorithm, :

Problem 9-3: write a program to sort some random data using heap sort
algorithm. You cannot use any existing built in function that creates heap
and/eor sorts data.

Problem 9-4: Write a program to sort some random data using merge sori
algorithm. You cannot use any existing built in function to merge or sort
data.

Problem 9-5: write a program to sort some random data using quick sort
algorithm. You cannot use any existing built in function to sort data.

Problem 9-6: Can you show (print) the element (data) comparisons and time
comparisons of all sorting algorithms for same sets of data?

Problem 9-7: write a program to search (find out) any integer out of 10
integers stored in an amay. Use linear searching.

Hints: store 10 integers in an array and use linear search to search any
desired number. The output will be the number and its position (index). Sce
algorithm for linear searching.

171

Chap.-9 Searching and Sorting

' Problem 9-8: write a program to search (find out) any integer out of 16
' integers armanged in ascending order and stored in an array. Use binary
gearch here,

' Hints: store 16 integers in an array in ascending order and search any
desired number using binary search. The output will be the number and its
position (index). See algorithm for binary search.

Problem 9-9: write a program for the following:

1) Generate 100 random integers and sorts them using insertion sort.
7} Use binary search to locate any desired number.

Hints: output will be the sorted list and the position (index) of the number
to be searched.

" Problem 9-10: Write a program to sort same sets of data using selection
sort, insertion sort, heap sort, merge sort and guick sort. Print the number of
data comparisons and execution time of each sorting algorithm separately.

Hints: write a program that will generate 10000 random numbers and sorts
them using the above mentioned sorting algorithms. The output will be
' sorted data, number of data comparisons and execution time of each
algorithm. Repeat the process for 100000 numbers and more.

CHAPTER TEN

HASHING

OBJECTIVES:

Identify hashing, hash table and hash function
Identify hash collision

Describe linear probing method

Write algorithms for linear probing method
Describe quadratic and random probing methods
Describe double hashing method

Write algorithms for double hashing method
Describe rehashing methad

Write algorithms for rehashing method
Describe chaining method

Write algorithms for chaining method

Y%V Y Y Y YWY V7YY vy wy

10.1 Hashing %—%.
Hashing means special type of searching for storing and retrieving data. In
hashing method, an array or table is used to store data that is culled hash
table. A special function called hash function is used to store and retrieve
data. For example a simple hash function is as follows:

hash function = key_value mod m:
where key_value may be Roll No. of a student, Personal ID etc. m is the size
of the hash table, say m = 100.

In hashing method, the function (hash function) which is used to store the
records (data) in the hash table, the same function must be used to retrieve
the data (records) from the hash table.

i 173
n.-10 Hashing

P

Figure-10.1: Hash table

10.2 Hash function ~ |
function that is used to transform a value (key_value) into a direct address

the hash table is called a hash function. There are several methods to ﬁJnd
out the direct address using hash function such as division method, mid-

square method, folding method etc.

-ued as follows:
h (key_value) = key_value mod m

Example: Let m = 10, key values are 13, 4, 12, 9, 24 ete. Then direct
addresses are 3, 4,2, 9, Sete.

Data Structures Fundamentals i (el

24 mod 10 1

2

4 3
_ w1 29

9

10

Figure-10.2: Storing key-value in hash table

10.2.2 Mid-square method (s

Here we have to take the binary representation of the key value. Then we
square these binary numbers and pick out the middle £ bits. Now these & hiis

will be used as hash address. The size of the hash table will be (at least) 2*
1. ' :

Example: Binary form of key vglue = 1011001, by squaring we gel
1111011110001, let & = 3, then middle 3 bits = 111 = 7. S0, the hash
address is 7. 3

10.2.3 Folding methods

Take a key value and divide it into equal parts. Fach part will be an intcper,
The hash address is calculated by adding all the integers.

Example: Suppose a key_value is 324112, If we divide it into 2-digit integers
(three parts) and add then, we get
32+4]1 +12=85. }

Uhap.-10 Hashing 175

all the key values are 6-digits long, then partitioning into 2-digit groups
elds hash address from 0 to 297 (6 + 3 = 2 = 99 % 3 = 297). Using 2-digits
jighest number we can represent is 99.

10.3 Hash collision Lﬁ-—
sh collision is the situation when two data (records) have to be stored in

fhe sarme position of the hash table.

As for cxample, if a record has been stored in index number 15 of the hash
.- ble, then usually it is not possible to store another record in index number
5, However, from hash function ‘we may get the same result, ie.l5 (as
hefore). It means now we have to store the record in index number 15 of the
sh table. But the index number 15 of the hash table is already occupied by
inother record. This situation is called hash collision. There are some
shemes or methods for resolution or resolving of hash collision.

0.3.1 Linear probing method 9“ _

near probing is a hash collision resolution scheme. If the target cell of the
hash table is already occupied, then we have to store the necessary data in
he hash table using following methods,

ippose, g is the result of the hash function, which means, we have to store
data in the cell of the hash table whose index is yg. If yq is occupied, then we
Iy to store the data in the cell whose index is

=¥+l

fy, is also occupied, then we store the data in the cell whose index is
»n=ntl

e shall follow the above method until we find an empty cell in the hash
wble. If we store data in the hash table using above method we have to use
hash function and same method at the time of retrieval of the data.

yo= key_value mod m
t key-value = 205 and m = 100.

Now yo = 205 mod 100 = 5, if cell number 5 is occupied then y, =5+ 1 =46,
hat means we shall try to store data in cell number 6.

Data Structures Fundamentals (el

. 1
205 mod 100)
3

3 4| 24

311 517105

6] 205
7
08
88
100

Figure-10.3: Hash collision and resolution with linear probing

Algorithm 10.1: Algerithm to ereate a hash table with data to resolve hash
collision using linear probing method

1. Input list of elements (key_values);
2. Create an empty hash table, T[1......m)
3. for(i=1tom)
{
i} index = key_vaiue mod m;
if (T[index] = 0), then T[index] = key value;
i) else |
do {
index = index +1;
if (index >=m) index=0;
g } while (TLindex] 1= 0);

"'.
]
I!
%
By

LChop.-10 Ha.shing_ 177

4. Tlindex] = key_value;,

b
5. Output a hash table with data (elements).

Comments: T[m] is an array of size m. Here we assume that the number of
slements in the list is less than or equal to m. We have taken a hash function,
ey-value mod m to find out the index of hash table. Here we resolve the
hash collision using linear probing method.

Algorithm 10.2: Algorithm to retrieve a data element from a hash table
1. Input the hash table, T[1......m], key-vaiue to be

retrieved;
2. b = key-value mod m;
3. if (T[A] = key-value), then item = T[A];
4. else { -
do {
hk=h+1;

} while (T[#] != key-value)
5. item = T[hT;

¥
6. Dutput: the target value in ffem
Comments: Here we assume that we have stored data using hash function,
ey-value mod m and resolved the collision using linear probing method.
We have taken a variable, item where we retrieve the target key-value.

0.3.2 Quadratic probing method
n this method, if we find the target cell of the table is occupied, then we use

following function as probing function to store the item.

is1 = (y; + i) mod m; where k=1, 2, 3 etc. and so on.

¥ = key-value mod m.

That means, at first we try yo + 1, then yp+ 4, yo + 9 and so on until an empty
gell of the hash table is found.

I yw=1,theny, =2, =5,y =10elc,

Data Structures Fundamentals I74

10.3.3 Random probing method
Here the following function may be used as probing function:

Yerr ={¥ +) mod m, where i =0, 1, 2, 3 and so on and r is an integer value
that is relatively prime to m. Two integers are relatively prime to each othetr
if their greatest common divisoris 1, ie.,

ged (m,m)=1; /fged for Greater Common Divisor,

If}lﬂ:E!andr:z*thenyl =5:}'2=T,_}r3=9,}'4= 11 efc.

10.3.4 Double hashing method
In this method we find a hash address using a hash function. If the address
(position) is not empty we use second hash function and find a hash value,
Using the first hash value (address) and the second hash value we find the
new hash address (position) in the hash table. We can define hash functions
and find out the new hash address as follows:
hy= key-value mod m;
if h, is occupied, we find the address as below:
h;= ({(h,*+ r)*k) mod m;
where, r= key-value mod p,
k=1,2,3...; here m and p should be prime numbers and p < m.
Example: Supposc we have key-value 211
i}y For the first key value:
¥,=911 mod 7=1 _
ii) For the second key-value:
232 mod 7= is not empty.

r=232and5=2

hy = ((hy+r)*k) mod m
=({(1+2)*1} med 7
=3mod7=3

i) 624 mod 7=1 is not empty

624 mod 5 =4
=({1+4)*1) mod 7
= 5, which is empty,

179

Igorithm 10.3: Algorithm to creatc a hash table with data to resolve hash

llision using double hashing metheod,

rma-13

1. Create a table with zeros in all cells, T[1.. m];
2, for(i=1tom)
{
k=1;
3. ind=key % m;
if (table [ind] == 0} table[ind] = key;
5. else

Fos

{
r=(key % p}+ 1;
do

= ((ind+r)*k) mod m;
k=k+1;
1 while (table[ind]!=0};
} /fend of else
6. table [ind] = key;
} Hend of for
7. output: a hash table with key values.

: Algorithm to retrieve an item from a hash table, where

collision has been resolved using double hashing
1. Input the hash table with data, , IT1......]
(the hash table that was created with data using
algorithm 10.3)
2. Input the key-value to be retrieved
3. h=key-value % m;
4k=1,
5. if (T[h] == key-value), item = T[h];
6. else {
r= (key-value % p) + 1;
7. do
{
ft={(h+ry*k}) mod m
k=k+1
} while (T{h] != key-value);
} #/ end of else
8. item =Trh];
9. Qutput: the valuable item (the target key-value).

Data Structures Fundamentals

10.3.5 Rehashing method :
In this method two hash functions are used. Suppose, one function is f and
another function is . Then we use following process to resolve the collision
If f (key-value) = y, is occupied, then we find & (o) = yi, A (i) =32, k ()
¥4 and so on. Here we repeatedly use the second hash function.

Suppose, f (key value) = key value mod m and h = (f{key wvalue +) mol
m, where r is a small prime number and ged (m, 1) =1, Let m= 10, r= 3 and
key values dre 621, 901 and B11.
i. Forthe first key value, y,= 611 and 10 =1 is free.
ii. For the second value,
¥o= 901 mod 10 =1 is occupied.
y1=(1+3) mod 10 = 4 is free.
iii) For the third key value,
y¥.=811 mod 10 =1 is occupied.
¥1=(1+3)mod 10 =4 is occupied.
y2= (4 + 31 mod 10 =7 is free.

Alporithm 10.5: An algorithm to create a hash table with data to resolve
hash collision using rehashing methed.
1. Input key values and r
2. Create a table with zero in all cells
3. for(l tom)
{
ind = key mod m;
if {table[ind] = 0), table [ind] = key;
4. else

{
do

1
ind = {md + r) mod m; -
1 while (table[ind]!=0);
+ end of else
table[ind] = key;
} / end of for
5. Qutput: table with key values

"

£

o

181

: Retrieve data element from a hash table, where collision
has been resolved using rehashing method.

. Input the hash table, T[1......m], key value to be
retrieved (the table that was created using the algorithm
10.5)

2. for(i=1to m)

{ 5

h=key value mod m:
3. if (ITh] = key-value), then item = TfhJ;
4.else | i

do {

h={h+ r) mod m;
} while (TTh] 1= key_value);
} ' '
5. item = T{hj:

}
6. Output: the variable item.

0.3.6 Chaining method

l is a hash collision resolution scheme. Here hash table is an array of
ointers. Each cell contains a pointer that points to the first node of a linked
5. We shall store the data not in the hash table but as some linked lists,

: ich are linked (connected) with the hash table. This has been illustrated in
Igure-10.4 and Figure-10.5.

Data Structures Fundamentals 182

i — 4200 1200

1

2 102 |+ 802 B 402

3

98

99 p 99 [1399 |- 1503 4199

Figure-10.4: Implementation of Chaining Method

If another key value is 802, then 802 mod 100 = 2, now we will create
another node for 802 and link this node with the first node (where data value
is 102). ’

Here, we have to use same hash function for storing and retrieving data.

Algorithm 10.7: Algorithm to create a hash table using chaining method

1. Declare node and table as agay of pointers:
(i). struct node
Tk
int key_value,
node *next;
}
(ii). node *table[m], *nptr, *tptr;
2. Create an empty hash table:
for (i=1 to m}
table[i] = NULL;
3. Input key_value and create a new node (with key_value)
4. index = key_value mod m;
if (table[index] = NULL), table[index] = nptr;
else |

L] MWULL 1] MULL
1 MULL 1 WULL
z MULL 2 NULL
k] MULL 3 WULL
ol MULL k] MULL

Chap.-10 Hashing 183

tptr = table[index];
while (tptr—next = NULL)
!
tptr = tptr—next;
}
ptr—next = nptr;
}
5. Repeat Step-2 to 4 each time you want to input another
key wvalue. '
6. Output: a chain of linked list
Comment: tablefm] is a armay of pointers of m size, nptr is the pointer to the
new node and ¢pir is a temporary pointer that is used to make
link between existing last node and new node.

o [muLe

1| NuLL

2 MITILT.

3 MULL

9 | wuLL 5 w [\
Table[index] = 99; WE} P

{a): A tnbbe with null walues and & new node with pointer nptr

L2 -1 ¥ " - ol 4199
n.pj tpir npir

{b): Adding a new node when {2): Adding a pew node with existing

. tablefindex] is rull node

Figure-10.5: Create a hash table using chaining method to avoid hash
collision.

Data Structures Fundamentals 3 144

Summary: ,

Hashing is the method of storing and retrieving data by searching in/from
table called hash table using a special function called hash function. There
are several methods to find out the position {address) using hash function:
division, mid-square, folding method ete. In division method, key-value (the
value that is used as a means of finding the position) is modulo divided by
the size of the hash table. In mid-square method, the key-value is represente:d
in binary form, then we square these values, and finally we pick out the
middle k bits. These k bits are used as hash address. In folding methods, the
key-value is divided into equal parts. The hash address is calculated by
adding all of these parts. Hashing has a limitation of causing hash collision,
which is the situation when hash address for two data (records) is found the
same. Hash collision can be solved by several methods: linear probing,
quadratic probing, random probing double hashing, rehashing, chaining
method ete. The methods or schemes are known as hash collision resolution
methods or schemes.

Questions:

1. Define hashing, hash table and hash function.

2. Write an algorithm to store items in a hash table, Solve hash collision
using linear probing method.

3. Write an algorithm to add items in a hash table. Here you have to solve
the collision using chaining method.

4, What is hash collision? Explain linear probing method of hash collision
resolution with example.

3. What is hash function? What do you know about different types of hash
functions?

6. Define rehashing. How can you evaluate the efficiency of rehashing
method?

7. Describe chaining method that is used for hash collision resolution.

8. Students in your class is 60, each contain 5 digit Roll number. If hashing
table memory location is 97, find locations with (i) division method, (ii)

. Mid-square method & (iii) Folding method for the following Roll

numbers, (39705, 99735 & 99759)

- Chap.-10 Hashing : 185

Suppose & Hash table contain 11 memory locations and a file contain 8
Records, where

Record AlB | C| D | EJ|BJaGi] H
P addie= 0 | 2 | 8 [2 |1 | 4 [105 1

Using linear probing method show how the records will appear in
memory. .
10. A Hash table contains 1000 slots, indexed from 0 to 999. The elements
in the table have keys that range from 1 to 100000. The original hash
function is Key MOD 1000, Which, if any, of the following collision
resolution schemes would work correctly and why?

(i) Rehashing, with function = (Key+1) MOD 1000

(i) Rchashing, with function = (Key+2) MOD 1000

{lii) Rehashing, with function = Key MOD 998

(iv) Rehashing, with function = (Key+3) MOD 1000

A Hash table is used to store employee records of EmployeeType whose
key field is called IdNum. The key may range in value from 1000 to
9999, The original hash function is key MOD 100. There is a chain of
records for each hash address. Write a procedure (function), which
inserts an employee record into the appropriate chain.

Data Structures Fundamentals 144

Problems for Practical (Lab) Class

Hashing related problems

Problem 10-1: write a program to store data (key values) in a hash table
using a hash function

where collision has been resolved using linear probing method. Display the
data and respective indices of the table,

Hints: generate 10 three digit integers. Find out the hash address (index)
using hash function such as h = key value mod m, where m = 10 and store
them in the hash table. Display the data and indices of the table,

Problem 10-2: write a program to retrieve a particular data (key valuc)
from the hash table using a hash function where collision has been resolved
using linear probing method. Display the data and respective index of the
table.

Hints: use the hash table that was created by the program as a solution of the
problem 10-1.

Problem 10-3: write a program to store data (key values) in a hash table
using a hash function where collision has been resolved using double
hashing method. Display the data and respective index of the table.

Froblem 10-4: write a program to store data (key values) in a hash tablc
using a hash function where collision has been resolved using double
hashing method. Display the data and respective index of the table.

Problem 10-5; wrile a program to store the data (records) of the 10 students
in a hash table using a hash function where collision has been resolved using
linear probing method. Display the data of all the students and respective
indices of the table. Each student record contains id of six digits, name and
marks.

Problem 10-6: write a program to retrieve the data (records) of a particular
student from the hash table using a hash function where collision has been
resolved using linear probing method. Display the data of the students aml
respective index of the table.

Hints: use the hash table that was created by the ﬁrogram as a solution of the
problem 10-5,

- Chap.-10 Hashing . 187

Problem 10-7: write a program to store data (key values) in a hash table
using a hash function where collision has been resolved using chaining
‘method. Display the data and respective indices of the table.

Problem 10-8: write a program to retrieve a particular data (key wvalue)
from the hash table using a hash function where collision has been resolved
using chaining method. Display the data, node number and respective index
of the table.

Hints: use the hash table that was created by the program as a solution of the
problem 10-7.

APPENDIX-A

DATA STRUCTURES IN
JAVA

OBJECTIVES: _

A data structure is the organization of data in a computer's memory ot in u
disk file. The correct choice of data structure allows major improvements i
program efficiency. A way to look at data structures is to focus on then
strengths and weaknesses. Some data structure operations on the following
important data structures are implemented in JAVA:

Array

» Stack
S Queue

¥ Linked list
¥ Recursion
¥ Tree

11.1 Array
11.1.1 Creating an array
There are two kinds of data in Java: primitive types (such as int and double),
and objects. Amrays are treated as objects in Java. Accordingly new operator
is used to create an array.
Example;

int[] intArray; // defines a reference to an array

intArray = new int[100]; // creates the array, and

i sets intArray to refer to it

These two lines can be combined in a single-statement approach:

int[] intArray = new int[100];

Because an array is an object, its name is a reference to an array; it's not the
array itself. The array is stored at an address elsewhere in memory, aml
intArray holds only this address.

Appendix-A Data Structures in Java 189

Arrays have a length field, which you can use to find the size, in bytes, of an
may:
int arrayLength = intArmay.length; // find array length

Bize of an array cannot be changed after it's been created. !

11.1.2 Accessing array elements
Array clements are accessed using square brackets.

xample: ’

lemp = intArray[3]; // get contents of fourth element of array

IntArray[7] = 66; // insert 66 into the cighth cell

I Java, the first element is numbered 0, if an index is less than 0 or greater
han the size of the array less than 1, the "Amay Index Out of Bounds"
time error will occur,

Initialization
array of integers is automatically initialized 1o 0 when it's created. If an
nrray of objects is created like the following:

putoData[] carArmay = new autoData[4000];

then, until they're given explicit values, the array elements contain the
#pecial null object.

The following syntax will initialize an armay of a pomitive type to something
besides 0:

Int[] intAmay = { 0,3, 6, 9, 12, 15, 18, 21, 24,27 };

Example:

Problem 11.1: Given an array of 10 elements.

. a) Display the contents of the array

b) Find, whether the array contains the value 66

c) Delete the value 55 from the array and display the remaining
elements.

Data Structures Fundamentals

Let's look at some example programs that show how an array can be used.

Algorithm 11.1; Amay
import java.io.*; // for VO
class AtrayApp

{

public static void main{String[] args) throws [OException

d

intf] intArray = {77, 99, 44, 55, 22, 88, 11, 0, 66, 33}; Varray

reference with initialization

int nElems = 10; // number of items in array
int j; // loop counter

int searchiey; // key of item 1o search for

{f display items of the array
for(j=0; j<nElems; j++)

System.out. print(intAmmay[j] + " ");
System.out.println");

i find item with key 66
searchKey = 66;
for(j=0; j<nElems; j++) // for each element,
iffintArray [j] == searchKey) // found item?
break; // ves, exit before end
if(j = nElems) // at the end?
System.out.println{"Can't find " + searchKey); / ves
else
System.out.println{"Found " + searchKey); // no
/f delete item with key 55
searchKey = 55; for(j=0; j<nElems; j++) // look for it
iflintArray [j] = searchKey)
break;
for{int k=j; k<nElems; k-++)} // move higher ones down
intArray [k] = intArmay [k+1];
nElems--; // decrement size

Appendix-A Data Structures in Java 194

if display items after deletion

for(j=0; j<nElems; j++}
System.out.print{intArmay [i] +" "%

System_oul.println{""};

| // end main()

i Il end class ArrayApp-

Comments: In this program, an array called intArmay is created with 10 data
{tems in it, an item with value 66 is searched, items with value 55 is deleted,

and then the remaining nine items are displayed. The output of the program
looks like this:

T79944 5522881106633
Found 66
T790 44 22 B8 11 0 66 33

11.2 Stacks

A stack allows access to only onc data item: the last item inserted. If this
ten is removed, then the next-to-last item can be accessed and so on. This is
useful capability in many programming situations.

11.2.1 Java code for a stack
Btack implements last in first out approach.

blem 11.2: Create a stack with the capacity 10 and
a) Push 4 given items in the stack
b) Display all the items by popping them from the stack.

thm 11.2: The StackImpl.java Program

package stack;

Data Structures Fundamentals

class StackUnderflowException extends Throwable
{
}

class StackOverflowException extends Throwable
{
'

public class StackImpl {

private int stackData[];
private int stackTop;
private int capacity;

feonstructor
public StackImpl (int capacity)
{
stackData = new int[capacity];
this.capacity = capacity;
this.stackTop = -1;
! ;
public int pop (Jthrows StackUnderflowException
{
if (stackTop == 0}
return stackData[stackTop--];
clse

{

throw new StackUnderflowException();

}
}
public void push(int item) throws StackOverflowException

{
if (stackTop < capacity-1)

Appendix-A Data Structures in Java 193

stackDiata[++stackTop]= item;

else
throw new StackOverflowException();

H
public boolean isEmpty()

L1
if (stackTop < 0) retum true;

else return false;
}
public boolean isFull()
o
f if (stackTop == capacity-1) retumn true;
A else return false;
& ."}
{fend class StackImpl
lass StackApp
{
public static void main(String|] args)
{
StackImpl aStack = new StackImpl(10}; // make new stack
with the capacity 10
aStack.push{20); // push items onto stack
aStack push{40);
aStack.push(60);
aStack.push(80);
while(laStack.isEmpty() } // until it's empty,
{ // delete item from stack
int value = aStack.pop();
System.out.print{value); // display it
System.out.print(" "};
} 4/ end while
System.out.println{"™);
} /' end main()
end class StackApp

Data Structures Fundamentals 194

The main() method in the StackApp class creates a stack that can hold [0
items, pushes 4 items onto the stack, and then displays all the items by
popping them off the stack until it's empty.

Here's the Output:
B0 60 40 20

It is worth to notice that how the order of the data is reversed. Because the
last item pushed is the first one popped; the 80 appears first in the output.

11.3 Queue

The word guene is British for line (the kind you wait in). In Bntain, to
"gqueue up” means to get in line. In computer science a queue is a data
structure that is similar to a stack, except that in a queuwe the first item
inserted is the first to be removed (FIFOQ), while in a stack, as we've seen, the
last item inserted is the first to be removed (LIFO).

11.3.1 A circular queue

When you insert a new item in the queue in the Workshop applet, the From
arrow moves upward, toward higher numbers in the array. When you remove
an item, Rear also moves upward. Try these operations with the Workshop
applet to convince yourself it's true. You may find the arrangement counter-
intuitive, because the people in a line at the movies all move forward, toward
the front, when a person leaves the line. We could move all the items in o
queue whenever we deleted one, but that wouldn't be very efficient. Instead
we keep all the items in the same place and move the front and rear of the
queue.

The trouble with this arrangement is that pretty soon the rear of the queue i
at the end of the array (the Highest index). Even if there are empty cells at the
beginning of the array, because you've removed them with Rem, you still
can't insert a new item because Rear can't po any further. Or can it?

Appendix-A Data Structures in Java 193

11.3.2 Wrapping around

“To avoid the problem of not being able to insert more items into the queue
even when it's not full, the Front and Rear arrows wrap around to the
beginning of the array. The result is a circular guene {sometimes called a

ring buffer).

You can sce how wraparound works with the Workshop applet. Insert
enough items to bring the Rear arrow to the top of the array {index 9).
Remove some items from the front of the array. Now, insert another item.
You'll see the Rear arrow wrap around from index 9 to index 0; the new item
will be inserted there.

Insert a few more items. The Rear arrow moves upward as you'd expect.
Notice that once Rear has wrapped around, it's now below Front, the reverse
of the original arrangement. You can call this a broken sequence: the items
in the queue are in two different sequences in the array. Delete enough items
so that the Front arrow also wraps around. Now you're back to the eriginal
arrangement, with Front below Rear. The items are in a single configuous

Sequence.

11.3.3 Java code for a queue
The queue.java program features a Queue class with engueue (), dequeue (),
} isFull(), isEmpty() and size() methods.

The main() program creates a queue of five cells, inserts four items, removes
three items, and imserts four more. The sixth insertion invokes the
wraparound feature. All the items are then removed and displayed. The

output looks like this:
40 50 60 70 80

" Problem 11.3: Create a queue of five items and

a) insert four given into the queue

b) remove three items from the queue

c) again insert four more items into the queue

d) display all the items by removing them from the queue.

Forma-14

Data Structures Fundamentals 14t

Algorithm 11.3: Queue

package queue; ;

class QuenelnderflowException extends Throwable
{

}

class QueneOverflowException extends Throwable
{

H

class Queuelmpl

{

private int capacity ;

private int[] queueData;

private int front;

private int rear;

private int nltems;

i
public Quevelmpl(int capacity) // constructor
{
this.capacity = capacity;
queueData = new int[capacity];
front =0
rear=-1;
nltems = O0;
i
i —
public void enqueue (int item) // put item at rear of queue
{
if (isFull()) throw new QueueOverflowException();
else
{

if{rear = capacity-1) // deal with wraparound
rear=-1; '

queueData[++rear] = item; // increment rear and insert
nltems++; // one more item

197

if (isEmpty()) throw new QueucUnderflowException ();

else
i
int temp = queueData [front++]; // get value and incr front
if{ front == capacity) // deal with wraparound
front=0;
nltems--; // one less item
return temp;
i

public boolean isEmpty() // true if queue is empty

return {nltems=0{);

public boolean isFull(} // true if quene is full

refum {nItmts*——éapacity};

public int size() // number of items in queue

retumn nltems;

} // end class Queue
plass QueueApp

public static void main{String[] args)

Queuelmp! aQueue = new Queuelmpl (10); / queue holds 10 items
aQuene.enqueue(10); // insert 4 items
aQueue, engueue (20);

Data Structures Fundamentals |44

aQueue. enqueue (30);

aQQueue. enqueue (40);

aQueue.dequeue (); // remove 3 items

aQueue. dequeue (); #/ (10, 20, 30)

aQueue. dequeue ();

aQuecue. enqueue (50; // insert 4 more items

aQueue. enquene (60); // (wraps around)

aQueue. enqueune (70}

aQueue, enqueue (30);

while('aQueue.isEmpty(} } // remove and display all items

{
int n = a(jueune. dequeue (); // (40, 50, 60, 70, 80)
System.out print{n);
System_out.print(" ");
}
System.out.println{"");
} #f end main()

} #f end class QueueApp

Queuelmpl class includes some fields, namely, capacity, front, rear anid
number of items currently in the queve, |

The enqueue() method assumes that the queue is m:-i full. If the queue is full
it raises a QueueOverflowException and quits. Otherwise an item can be
inserted in the queue. Normally, insertion involves incrementing rear and
inserting at the cell rear now points to. However, if rear is at the top of the
array, at capacity -1, then it must wrap around to the bottom of the array
before the insertion takes place. This is done by setting rear to —1, so when
the increment occurs rear will become 0, the bottom of the array. Finally
nltems is incremented. '

The dequeue{) method assumes that the queue is not empty. If the queue i
empty it will raise a QuenelUnderflowException and quits. Removal alwayy
starts by obtaining the value at front and then incrementing front. However,
if this puts front beyond the end of the armay, it must then be wrapped around
to

Appendix-A Data Structures in Java 199

._Mﬂlurn value is stored temporanily while this possibility is checked.
“Finally, nltems is decremented.

"

The isEmpty(), isFull() and size() methods all rely on the nltems field,
respectively checking if it's 0, if it's capacity, or returning its value.

11.4 A simple linked list

-._- first example program, linkList.java, demonstrates a simple linked list.
The only operations allowed in this version of a list are

% Inserting an item at the beginning of the list

+ Deleting the item at the beginning of the list

¢ [terating through the list to display its contents

11.4.1 The Link class

Here is the complete class definition:

tlass Link

|

public int value ; // data item
public Link next; // next link in list

public Link(int value } /f constructor

{
this.value = value ; // initialize data
this. next = null; // ('next' is set to null)

}

public void displayLink() // display ourself

i
System.out print{"{" + value + "} "}

}

| I/ end class Link

Here in addition to the data, there's a constructor and a method,
JisplayLink(), that displays the link's data in the format {22}.

Data Structures Fundamentals - . . 20

The constructor initializes the data. The next field is explicitly initialized 1
null for clarity, although its automatically set to null when it's created. The

null value means it doesn't refer to anything, which is the situation until the ‘
- Es

link is connected to other links.
11.4.2 The LinkList class

The LinkList class contains only one data item: a reference to the first link
on the list. This reference is called first. It's the only permanent information
the list maintains about the location of any of the links. It finds the other
links by following the chain of references from first, using each link's nex
field.

Alporithm 11.4: Linked List

class LinkList '

{
private Link first; // ref to first link on list
public void LinkList() // constructor

{
first = null; // no items on list yet
1 ,
public boolean isEmpty() /f true if list is empty
{,
return (first=null);
}

I/ insert at start of list

public void insertFirst(int id}

{ // make new link
Link newLink = new Link(id);
newLink.next = first; /f newLink --> old first
first = newLink; // first --> newLink

}

public Link deleteFirst(} // delete first item

[/7 (assumes list not empty)
Link temp = first; // save reference to link
Tirst= first.next; // delete it: first-->old next

Appendix-A Data Structures in Java 201

return temp; / return deleted link

1
public void displayList()
{
System.out.print{"List (first-->last): ");
Link current = first; // start at beginning of list
while(current I= null} // until end of list,
{
curent.displayLink(); // print data
current = curent.next; / move to next link
}
System.out.println(""};
H

}/lend LinkList

constructor for LinkList sets first to null. However, the explicit
constructor makes it clear that this is how first begins. When first has the
value null, we know there are no items on the list. If there were any items,
first would contain a reference to the first one. The isEmpty() method uses
is fact to determine whether the list is empty.

‘The insertFirst() method of LinkList inserts a new link at the beginning of
the list. This is the easicst place to insert a link, because first already points
o the first link. To insert the new link, we need only set the next field in the
newly created link to point to the old first link, and then change first so it
points to the newly created link. In insertFirst(} we begin by creating the new
link using the data passed as

‘arguments. Then we change the link references as we just noted.

e deleteFirst() methad is the reverse of insertFirst(). It disconnects the first
ink by rerouting first to point to the second link. This second link is found
by looking at the next field in the first link.

The second statement is all you need to remove the first link from the list,
We choose to also return the link, for the convenience of the user of the
linked list, so we save it in temp before deleting it, and retum the value of
lemp.

Data Structures Fundamentals 202

The deleteFirst() method assumes the list is not empty. Before calling i,
program verify this with the isEmpty() method.

To display the list, you start at first and follow the chain of references from
link to link. A variable current points to {or technically refers to) each link in
turn. It starts off pointing to first, which holds a reference to the first link.
The statement changes current to point to the next link, because that's what's
in the next field in each link.

At each link, the displayList{) method calls the displayLink() method 1w
display the data in the link.

Problem 11.4: Insert four given items in the linked list and display them.
Then removed all the elements from the linked list.

class LinkListApp
{
public static void main(String[] args)
{
LinkList theList = new LinkList(); // make new list
theList.insertFirst(22); /¥ insert four items
theList.insertFirst(44);
theList.inserFirst{66);
theList.insertFirst{88);
theList.displayList(); // display list
while({ !thelist.isEmpty(} } #/ until it's empty,
{
Link aLink = theList.deleteFirst(); // delete link
System.out.prnt{"Deleted "); // display it
aLink displayLink();
System.out.println("");
i
theList.displayList(): // display list
4/ end main()
{ // end class LinkListApp

R

Appendiz-A Data Structures in Java 203

In main() we create a new list, insert four new links into it with insertFirst(),
and display it. Then, in the while loop, we remove the items one by one with
deleteFirst() until the list is empty. The empty list is then displayed. Here's
the output from linkList java;

List (first-->last): {88} {66} {44} {22}
Deleted {88}

Deleted {66}

Deleted {44}
Deleted {22}

List (first-->last);

Linked-List efficiency
Insertion and deletion at the beginning of a linked list are very fast. They
invelve changing only one or two references, which takes O(1) time,

Finding, deleting, or insertion next to a specific item requires searching
through, on the averape, half the items in the list. This requires O{N)
comparisons. An ammay is also O(N) for these operations, but the linked list is
nevertheless faster because nothing needs to be moved when an item is
inserted or deleted.

1.5 Recursion: Finding factorials
Factorials are similar in concept to trangular numbers, except that
ultiplication iz wused instead of addition. The triangular number
rresponding to n is found by adding n to the triangular number of n-1,
hile the factorial of n is found by multiplying n by the factorial of n—1.
hat is, the fifth triangular number is 5+4+43+42+1, while the factorial of 5 is
¥4#3%3] which equals 120. The factorial of 0 is defined to be 1. Factorial
mbers grow large very rapidly, A recursive method can be used w0

leulate factorials. It looks like this:

Data Structures Fundamentals 24K

Algorithm 11.5: Factorials
long int factorial(int n)

ifin==0) /

return 1; 1
else
return {n * factorial(n-1));

}

The base condition occurs when n is 0.

Enter a number: &
Factorial =720

Various other numerological entities lend themselves to calculation using
recursion in a similar way, such as finding the greatest common divisor ol
two numbers (which is used to reduce a fraction to lowest terms), raising 4
number to a power, and so on. Again, while these calculations are interesting
for demonstrating recursion, they probably wouldn't be used in practice
becausc a loop-based approach is more efficient.

11.6 Binary trec

Tree combines the advantages of two other structures: an ordered amay and «
linked list. You a tree can be searched, as an ordered array, and also inserted
and deleted items quickly, as with a linked list.

Slow insertion in an ordered array

In an ordered array, where all items are aranged in an order, it's quick 1o
search such an arra'g,r for a particular value, using a binary search. Applying
this process repeatedly finds the object in O(logN) time. It's also quick 1o
iterate through an ordercd array, visiting each object in sorted order, On the
other hand, if an item be inserted into an ordered array, firstly a position |0
be found where the item will go, and then move all the objects with greate
keys up one space in the array to make room for it. These multiple moves are
time consuming, requiring, on the average, moving half the items (N7
moves). Deletion involves the same multimove operation, and 15 thus equally
slow. If there is a lot of insertions and deletions, an ordered array is a bil
choice.

Appendix-A Data Structures in Java 205

Slow searching in a linked list

On the other hand, insertions and deletions are quick to perform on a linked
list. They are accomplished simply by changing a few links. These
operations require O(1) time Unfortunately, however, finding a specified
element in a linked list is not easgy. It should be started at the beginning of
the list and to visit each element until the sought item is found.

It will take on an average of N/2 items, comparing each one's key with the
desired value. This is slow, requinng O{N) time.

Binary trees to the rescue

Trees provide quick insertion and deletion of a linked list, and also the quick
searching of an ordered ammay. It shows both these characteristics, and are
also one of the most interesting data structures.

11.6.1 The Node class

First, we need a class of node ohjects. These objects contain the data
representing the objects being stored, references to each of the node's two
children and a reference to the parent of each node. . Here's how that looks:

class BST {
fimembers
private int value ={
private BST left = null;
private BST right = null;
private BST parent = null;

public int getValue) {retumn this.value; }
public BST getleft() {retum this.left;}
pubfi:: BST petRight{) {retum this.nght;}
public BST getParent() {return this.parent;}

' } /lend BST class

The BST class has a number of methods: some for finding, inserting, and
deleting nodes, several for different kinds of traverses, and one to get the
sorted data. BST also has two overloaded constructors to properly initialize
the B5T class. The following is a skeleton version:

package bst;

class BST {

Data Structures Fundamentals

20

Hlconstructors '
public BST (int aValue) { }
public BST (int[] data) { }

public void insertNode(int aValue)

i

h

public void traverseInOrder()

{

H

public void traversePreOrder()
!

}

public void traversePostOrder()
{

i : .
public Vector getSortedData'{)

{

H

public BST search(int aValue)

{

H

public void deleteMNode(int item)
i

i
tifend BST class

11.6.2 The TreeApp class

Finally, a class is required to pcrfﬁrm operations on the tree. Here's how you

might write a class with a main{) routine to create a tree, insert three nodes

into it, and then search for onc of them and traverse the tree in different ways.

Here is the listing of the class BSTApp:

Problem 11.5: Given 10 data.
g) Create a binary search tree

b) Show the output for preorder, in order and postorder

traversing of the BST -

Appendix-A Data Structures in Java ; 207

c) Display the sorted list using Vector

d) Delete the node containing value=50 and then display
the output for inorder traversing

¢) Find, whether the BST contains the elements 90 and 120

or not.
package bst;
import java.util. Vector;
 class BstApp 5
{

public static void main (String[] args)

{

I test data

int testData [] = {50, 25, 75, 22, 40,60, 90, 15, 23, 80};
BST bst = new BST(testData);

System.out.print(" Preorder Traversing:\t");
bst.traversePreOrder();

System.out_println();

System.out.printin{);

System.out.print{"Inorder Traversing:u");
bst.traverselnOrder();
System.out.println();

System.out.printin();

System.out.print{"Postorder Traversing:\t");
bst.traversePostOrdar();
System.out.printin{);

System.out.println();

Vector sData = bst.getSontedData();

IR
Data Structures Fundamentals 2

System.out.print("Sorted List:\t");

for (int i = 0; i< sDatd.size(); i++)

{ o~
Integer j = (Integer) sData.elementAt(i);

System.out.print(j.intValue() + "u");
}
System.out.printin();
System.out.printin();

fftry to delete a node

int item = 50 ;

bst.deleteNode(item);

System.out.print("Inorder Traversing after deleting ["+ item + "N,
bst.traverselnOrder();

System.out.printin{),

System.out.println();

i
int aValue = 90);
if (bst.search(aValue) != null)
System.out.printin{aValue + " is found in bst");
else
System.out.println(aValue + "is not found in bst");
aValue = 120;
if (bst.search(zValue) != null)
System.out.printin{aValue + " is found in bst");

else
System.out.println(aValue +" is not found in bst™);
i *
} Mend main

tffend class

-

Appendix-A Data Structures in Java 209

*

Next we'll ook at individual tree operations: finding a node, inserting a node,
traversing the tree, and deleting a node.

1.6.3 Searching for a node

Finding a node with a specific key is the simplest of the major tree
Operations, so let's start with that. The nodes in a binary search tree
correspond to objects containing information. They could be person abjects,
".l.rlth an employee number as the key and also perhaps name, address,
'lulr.plmne number, salary, and other fields. Or they could represent car parts,
ith a part number as the key value and fields for quantity on hand. price,

d so on. But for simplicity’s sake we include only an integer number as the
ta of tree node,

gorithm 11.6: Searching in BST
blic BST search(int aValue)

{

BST node = this;

while {node != null)

{
if (aValue == node.getValue()) return node;
else if (aValue > node.getValue())
node = node.right;
else d
node = node. |eft;
}
return null;
}lend search

we start from the current node (by this keyword). A match is sought to
whether it is matched with the searching value (aValue). If a match is
nd we return the matching node. If a match is not found, we follow either
or right child depending on the value on the node. If all the items in the
are exhausted we return a null indicating that no match could be found.

211}
Data Struciures Fundamentals

11.6.4 Inserting a node : _ s i
To insert a node we must first find the place to insert it. This is much tl

same process as trying to find a node that tumns out not to exist, as descrihrﬂ_
in the section on Find. We follow the path from the root to the ameFm;u-
node, which will be the parent of the new node. Once-this-parent 15 found,
the new node is connected as its left or right child, depending Dn\wéflhi.‘r e
new node's key is less than or greater than that of the parent.

Algorithm 11.7; Inserting a node ;
public void msertNode{int aValue)
{
BST node = this; /finsert data from the current node
if (node = null) return ;

BST parent = null;

/{find the suitable position within bst
while (node 1= null }
{ if (aValue > node.value) {
parent = node;
node = node.right;
b else {
parent = node;
node = node.left;
}
}

fcreate a new node

node = new BST(aValue);

{/add this newly created node to the existing tree
if (parent == null) return ; :

Appendix-A Data Structures in Java 211

node.parent = parent;

if (aValue > parent.getValue())
parent.right = node;

else
parent.left = node;

Hiend insertNode

11.6.5 Traversing the tree i
Traversing a tree means visiting each node in a specified order. This process
i$ not as commonly used as finding, inserting and deleting nodes. One reason
for this is that traversal is not particularly fast. But traversing a tree is useful
in some circumstances and the algorithm is interesting. There are three
simple ways to traverse a tree. They're called preorder, inorder and
postorder. The order most commonly used for binary search trees is inorder,
50 let's lookat that first, and then retumn briefly to the other two.

g,

Inorder traversal

An inorder traversal of a binary search tree will cause all the nodes to be
visited in ascending order, based on their key values. If you want to create a
sorted list of the data in a binary tree, this is one way to do it

The simplest way to carry out a traversal is the use of récursion, A recursive
method to traverse the entire tree is called with a node as an argument,
Initially, this node is the root, The method needs to do only three things:

L. Call itself to traverse the node's left subtree

2. Visit the node

3. Call itself to traverse the node's right subtree

Visiting a node means doing something to it: displaying it, writing it to a file
r whatever.

rma-1 3

Data Structures Fundamentals 212

‘Algorithm 11.8: Inorder Traversal of BST

public void traverselnOrder()

{
if (this.left '= null } this.left. traverseInOrder();

P i
P -

System.out,print(this.value +""Y; - Y

",

if (this.right 1= null) this.right traverseInOrder(); A

}/fend traverseInOrder

Preorder and Postorder traversals
Thete are two more ways besides inorder; they are called preorder and

postorder.
A binary tree (not a binary search tree) can be used to represent an algebraic
expression that involves the binary arithmetic operators +, -, f and *. The
root node holds an operator and each of its subtrees represents either &
variable name (like A, Bor C) or another expression.
Here's the sequence for a preorder() method:

1, Visit the node.

2 Call itself to traverse the node's left subtree.

3. Call itself to traverse the node's right subtree,

The postorder traversal method contains the three sleps arranged in

yet another way:
1. Call itself to traverse the node's left subtree.

3. Call itself to traverse the node's i ght subtree.
3, Visit the node.

Algorithm 11.9: Preorder Traversal of BET

public void traversePreOrder()
i

Sy‘smm.outpﬁnt(this,value S

Appendix-A Data Structures in Java
213

1if (this.left = null) this.left. traversePreOrder();
if (this.right 1= null) tlﬁs.!'ighl.havechmDrdcrllﬂ'

Hlend traverseInOrder
Algorithm 11.10: Postorder Traversal of BST

public void traversePostOrder()
{

if (this.left = null) lhis.leﬁ.tmversePostO:ﬂer(]'

if {this.right != null) th:‘s.ﬁghLiraversePustDrder{)‘
System.out. print{this.value +""); 1

}/end traverseInOrder

B0 De]eﬁng a node

leti ’ ;
eting a node is the most complicated common operation required fo
r

ary search trees. However, deletion is i
0 x 3 elion 15 important in PR}
studying the details builds character. many tree applications,

ou start by finding the node you want
saw In find()

to consider.

to delete, using the same g
: pproach
and insert(). Once you've found the node, there are three

node to be deleted has two children,

rithm 11.11: Deleting Node from BST

blic void deleteNode{int iterm)

204
Data Structures Fundamentals

Appendix-A Data Structures in Java 215

BST node = search (item);

!
BST parent = node.parent; //mode has only one child
if (node.left == null)
{
{fitem not in bst _
if (node = null} N //mode has only right child
‘ - \'\ : : //determine whether it was left or right child of parent
System.out.println (item + " Not found-in the BST' % if (item > parent,value)
returm ; parent.right = node.right;
clse
' parent.left = node.right;
if (node.left = null && node.right == null && parent ==) retum ;

{

{fonly the root is present . »
System.out.println ("BST contains only a single node. Root canl

be deleted.");

}

else if (node.right = null)

{
returm ; {node has only left child
{/determine whether it was left or right child of parent
E:Inuds has no child, can safely be removed from bst if (item > parent.valuc)
if (node.left= null && node.right == null) parent.right = node.left:
{ 4 clse
parent.left = node.left;
i ﬁ'detemine wheﬂ‘!:r it was IE& or rjghl chﬂd nf'parcnl o :
if (item > parent.value) }
parent.right = null;
clse {/node has both two children
parent.left = null; fupdate the value of deletin g node with that of the inorder
essor
¥

{be sure to delete the inorder successor!

if (node. left 1= null && node.right != null)
{

i return ;

2_“1

Data Structures Fundamentals

BST successor = node.right;

while (successor.left = null)

t

successor = successor lefi;

/inow insert va‘lyﬁf!m or to node.
node. value = SUCCEessoT.Valug;

successor.deleteNode(successor.value);

returm ;

}ifend deleteNode

hildren
1: The node to be deleted has no ¢ _ . St
g:!:elet: a leaf node, you simply change the appropnate c‘mld_ ﬁCh.i in thi
ode's parent to point to null instead of to the node. The node will still exisl,
n
but it will no longer be part of the tree.

: The node to be deleted has one child ‘ o
g::: cis:;n‘i so bad either. The node has only two mnnechnr_w_.: to :inp;:li::
and to its only child. You want to "snip" the Md.e l:fut of this ieq =
connecting its parent directly to its child. This mvnlv;s1 c ::115 i
appropriate reference in the parent to point to the deleted node’s child.

hildren
« The node to be deleted has two ¢ : i .
ffa::de!cted node has two children, you can't just replace it with one 1:
these children, at least if the child has its own children. To delete a no

with two children, the node is replaced with its inorder SUCCESSOr,

Appendix-A Data Structures in Java 217

The efficiency of Binary tree

Most operations with trees involve descending the tree from level to level to
find a particular node. In a full tree, about half the nodes are on the bottom
level. (Actually there's one more node on the bottom row than in the rest of
the tree.) Thus about half of all searches or insertions or deletions require
finding a node on the lowest level. {An additional quarter of these operations
require finding the node on the next-to-lowest level, and so on.) During a
search we need to visit one node on each level so we can get a good idea

how long it takes to carry out these operations by knowing how many levels
there are,

Assuming a full tree

In that case, the number of comparisons for a binary search was
approximately equal to the base-2 logarithm of the number of cells in the
array. Here, if we call the number of nodes in the first column M, and the
number of levels in the second column L, then we can say that N

is 1 less than 2 mised to the power L, or
N=2-1

Adding | to both sides of the equation, we have

N+1=2L

This is equivalent to
L = log2(N+1)

Summary:

In this chapter we have shown different types of operations on array, stack,

queue, linked list, tree etc. The operations arc depicted in algorithms or
grams using Java.

Java an array is an object, its name is a reference to an array; it's not the
aray itself. The array is stored at an address elsewhere in memory, Arrays

ave a length field, which can be used to find the array size. Size of an array
. annot be changed after it's been created,. We have discussed various
Igorithms, such as linear search, binary search, bubble sort ete, that make
se of simple arrays. We have also demonstrated some aspecis of data
ture operations which involve armay of objects.

Data Structures Fundamentals 2K

Three important data structures which involve armays for storage, mamely,
stack, queue, and priority queue, are examined. We have seen how these
structures differ from simple arrays.

A stack allows access to only one data item: the last item inserted. IF this
item iz removed, then the next-to-last item can be accessed and so on. This is
a useful capability in many programming situations. In computer science
queue is a data structure that maintains that the first item inserted is the first
to be removed (FIFO), while in a stack the last item inserted is the first to be
removed (LIFO). The priority queue (heap) is a partially ordered data
structure that can readily give the top priority item.

Unlike arrays linked list is an exquisite picce-of data structures in which each
node of the structure contains a pointer to the next node of the list. Insertion
and deletion from a linked list is easy while traversing or sorting a linked List
is costly because we have to move from node to node to find the desired one,

Divide and conquer methed is analyzed by introducing quick sort and merge
sort algorithms. We have also discussed the concept of recursion through
various examples.

Trees provide quick insertion and deletion of a linked list, and also the quick
searching of an ordered array. It shows both these characteristics, and is also
one of the most interesting data structures, Here we provide in depth study ol
Binary Secarch Tree (BST): inserting nodes in BST, deleting nodes from By
and traversing BST in various ways. Interestingly preorder traversing will
produce a sorted list of nodes.

Appendix-A Data Structures in Java 219

Questions:

1. Briefly describe the notions of

i) The Complexity of algorithms and

ii} The Space-Time tradeoff of algorithms.
Give flowcharts for

i) Double alternative

ii} Repeat-For and

i) Repeat-While Structures.

3. Find 26 (mod 7), -2345 (mod &)

Suppose T = ‘THE STUDENT IS5 ILL'. Use INSERT to change T so
that it reads:

i) THE STUDENT IS VERY ILL

i) THE STUDENT IS ILL TODAY

iii) THE STUDENT IS VERY ILL TODAY

s Consider the linear arrays AAA (5:50), BBB (-5:10) and CCC (1:18).
Also suppose Base (AAA)=300and w=4 words per miemory cell for

i) Find the number of elements in each array.

i) Find the address of AAA [25], BBB [7] and CCC [15]

6. Sort the following in descending order of complexity:

nlog,n, 2", n, n, log,n

7. Suppose a company keeps a linear array YEAR (1920: 1970) such that
YEAR [K] contains the number of employees bomn in year K. Write a
module to find the number NNN of years in which no employee was
bom.

8. Consider the alphabetized linear array NAME with the following data;

1 2 3 4 5 6 7 03 9 100 11 12 13 14

A c|n E|G\H]1 K]L|M1R|5 Tl\U

i) Using the linear search algorithm, how many compatisons are
used to locate H, M and F?
ii) Suppose the Binary Search algorithm is applied to find the

location of G. Find the ends BEG and END and middle MID
for the test segment in each step.

Data Structures Fundamentals i

211
Appendix-A Data Structures in Java

9,

10.
1.

12.

13.

14,

15.
' defined as follows:

1a.

BIL] = ay

: : EUE is a circular
Suppose we want to store the lower triangular sparse matrix A in a 17. Consider the following queue of characters, where QU

linear array B such that Bf1} = ayy, Bf2] = a;;, Bf3] = ay,, Bf4l = uy,
... and so on.
Build up a formula that gives the integer L in terms of J and K where

array with six memory

cells: 3 3
FRONT =2, REAR=4 QUEUE: A CD,_,_

Describe the QUEUE as the following operations take place: ‘

i) F is added, ii) Two letters are deleted, iii) K, L, M arc added, iv)

Two letters are deleted, v) R is added.

Write pseude code for push, pop, enque and deque operations.
Consider the following arithmetic expression P written in postfix
notation:

P: 5,6,2,+%,12,4,/,- 19. Suppose the following list of letters are inserted in order into an empty
i) Convert the above exprc.ssi?n in equivalent infix expression. binary search tree:
if) Show step by step the contents of the stack as P is seanned LRDGTEMHPAFQ
element by element for evaluation, i) Find the final tree T.)
Consider the following arithmetic infix expression Q: i) Describe the tree after the node M and D is deleted.

20. Consider the complete tree T with N = 10 nodes:
1 2 3 4 5 (3 7 B 9 10
| 30 [50 |22 | 33 | 40 [60 |11 | 60 | 22 | 55 |
i} By inserting each clement once ata time build a Max Heap.
i) Delete the top clement from the final tree and reconstruct the heap.

Q: A+(B*C-(D/E*"F)*G)*H
Follow sttp-bystép procediire-ta-convert Q to equivalent postfix
expression.
Suppose S is the following list of 14 alphabetic characters:
DATASTRUCTURES
Use quicksort algorithm to find the final position of the first character 1)
Show each step,

Translate by inspection the following infix expression to postfix
expression:

i} (A+B*D)/(E-F)+G

ii) A*(B+D)/E-F*{G+H/K)

Let a and b denote positive integers. Suppose a recursive function Qs

ifa<h

a
(a,b) = _
0) Qla—-b,b)+1 ifb<a
Find the value of Q (2, 3), Q (14, 3)and Q (5861, 7)
Write a recursive definition of the factorial of 2 number. Write a
function to calculate recursively
the factorial of a given number.

18. Define binary trees. Express E=(a—b) / ({c * d) + ¢} using a binary tree.

APPENDIX-B

DATA STRUCTURE IN C
SHARP (C#)

OBJECTIVES:
'_The Data Structures deseribed in this chapter are as follows which e
implemented in C #.
» Armays
Array List
Pointers
Linked List
Stacks
Queues e
Hashing/" ™
Sorting
Serted List
Searching
Set

YY Y ¥V V¥YVYVYYY

Trees

12.1 Arrays .
I. One Dimensional Array
2. Two Dimensional Array
3. Multi Dimensional Array
4. Jagged Armay
5. Bit Amay

12.1.1 One dimensional array
One dimensional Array in C sharp is declared as follows:

int[] sample = new int[number);

Appendix-B Data Structure in C Sharp C#) 223

It means that a one dimensional array named “sample’ (user given) is
greated of length (number+1). Here type of data items is integer.

nd after creation the array can be used in the following way:
sample[num] = 3,
“qum” is within the range of “number™).

Example: A program that will store some data to its associated index and
display those at the output.

‘Sample Program=

Demonstrate a one-dimensional array.
using System;

ublic class ArmayOD|

public statie void Main() {

int[} sample = new int[10];

int i;
for(i=0;i<16;i=1+3)
sample[i] = 1;

for(i=0;i<6;i=i+1)
Console. WritcLine("sampleArray[" + i+ "1 " +
samplefi]);
}
}

Sample output=
sampleArray[0]=0
sampleArray[1]=3
sampleArray|2]=6
sampleArray[3]=9
sampleArray[4]=12
sampleArray[5]=15

| 12.1.2 Two dimensional array
Two dimensional Array in C sharp is declared as follows:|
int[,] table = new int{numberl, number2};

Data Structures Fundamentals 2

It means that a two dimensional array named “table” (user given) is created

where no. of rows is number] and no. of columns is number?. Here type ol
data item is integer.

And after creation the array can be used in the following Wiy
table[numl,num?2] = 8:
{("num1™ and “num2" are within the range of “numberl” and “number?")

Example: A program that will store some values (as calculated) to s
associated two dimensional index and displays at the output.

Sample Program=
using Systern;
public class ArrayOD |
public static void Main() {
intt, i
int[,] matrix = new int[3, 4]; / Declaration of 2D Array
Console. Writeline (“Sample out put="73;
for(t=0;t=<3; ++1) |
for(i =0; i < 4{ ++{.
matrix[t,i] = (£*4) k1
Console. Write{matrix[t,i] + " "); -

H
Console. WriteLine();
! ;
}
H
Sample output=

1234
5678
9101112

Appendix-B Data Structure in C Sharp (C#) 225

12.1.3 Multi dimensional array

Multi dimensional Array in C sharp is declared by the following Structure.
| it[,] matrix = { {numl, num2}, {num3, num4}, {num3, numé6}, {num7, nu

mi}, {num?, numl0} };

means that Multi dimensional array named “mdimen” (user given) is
greated whose clements are integers and 5 parts are in the array and in each
there resides two elements.

d after creation the array can be used in the following way

Console. WriteLine{mdimen [2,07);
This will print value “num5”. Because 2 means it resides at 3rd index of the
: dimen” array. And the following { means the value of the first element of
Iwo elements.

fxample: A program that will store value from 1 to 10 in a
multidimensional array and displays at the output.

Bample Program=
using System;
public ¢lass Multidimensional Arrays

public static void Main(}
{
int[,] mdimen = { {5, 7}.{9, 11},{10, 12},{14, 16},{21, 29} };
for (int 1 = 0; i < mdimen.GetLength(0); i++)
{
for (int j = 0; j < mdimen.GetLength(1); j++)

i
Console. WriteLine{"mdimen({0}, {1}]= {2}", i, i, mdimen[i, j]};

Data Structures Fundamentals

Sample outpur=
Mdimen[0,0]=5
Mdimen]0,1]=7
Mdimen[1,0]=9
Mdimen[1,1]=11
Mdimen[2,0]=10
Mdimen|2,1]=12
Mdimen[3,0]=14
Mdimen(3,1]=16
Mdimen[4,0]=21
Mdimen[4,2]=29

12.1.4 Jagged Array

What is Jagged array?

Jagged Array in C sharp is declared by the following Structure.

int[J[] JArray = new int [number][];
jagged [0] = new int [range];
jagged [1] = new int [range];
jagged [2] = new int [range);

....... / --K'K
. e s
jagged [number-1] = new int [range];

20

It means that Jagged armay named “JArray™ (user given) is created where

cach jagged array is further holds a one dimensional array.

And after creation the array can be used in the following way

Jagged [0][numberl] = 2;

Console, WriteLine (jagged [0],[number]]);
(“numberl™ is within the range of “number’™)

This will print value 2 as the array of the specified point contains 2.

Appendix-B Data Structure in C Sharp (C#) # T . |

Example: A program that will store value from 0 to 4 in.a jagged armay

which consists three arrays and displays the values the output of three

feparate arrays.

Sample Program=
using System;
public class Jaggedl {
~ public static void Main() {
int[1[] JArray = new int{3][]; // Demonstrate jagged armays
JArray[0] = new int[4]; '
JArray[1] = new int{4];
JArmay[2] = new int[4];
int i;
nsole. Writeline(Sample output™);
nsole. Writeline{);
/f store values in first array
for(i=0; i < 4; i++4)
JArray [0][i] = i+2;
M store values in second armay
for(i=0; i < 4; i++4)
JAmay [1][i] = i+4;
/f store values in third armay
for{i=0; i < 4; i++)
JArray [2][i] = i+4;
/f display values in first array
for{i=0; i < 4; i++)
Console. Write{JArray [0][i] +" "),
Console. WriteLine{);
/f display values in second amray
for(i=0; i < 4; i++)
Console. Write{JAmay[1][i] + " ");
Console. WriteLine();
! display values in third array
for{i=0; i < 4; i++)
Console. Write(JArmay[2][i] + " ")
Console. WriteLine{);

ma-16

Data Structures Fundamentals

224 Appendix-B Data Structure in C Sharp (CH)

Sample output=
0345
0456
0567

12.1.5 Bit Array

What is bit array?

For'accessing the individual bits in the bit armay, BitArray class implements
an indexer. bool[] performs the same thing but An instance of the BitArray
class consumes substantially less memory than a corfesponding bool[].

The class of BitArray is described below.
using System,

class BitArmay {

int[] bits;

int length;

public BitArray(int length) |

if {length < 0) throw new ArgumentException();
bits = new int[{{length - 1} == 5) + 1],
this.length = length;

}

public int Length {

get { return length; } T

) / T
public bool this[int index] {
get {

if (index < 0 || index >= length) |

throw new IndexOutOfRangeException();

}

return (bits[index >> 5] & 1 =< index) 1= 0;
1

set §

if (index < 0 || index >= length) {

throw new IndexOutOfRangeException();

)

229

if (value) {

bits[index >> 5] |= 1 << index;
)

else {

bits[index >> 5] &= ~(1 << index);

Any Program can usc the BitAmay by creating an instance of BitArray.
BitAmay ba = new BitAmay(8);

Example: A program that uses the BitArray Class by creating instance of
BitArmay.

sing System.Collections;

public class BADemo |

public static void showbits(string rem,

BitArray bits) {

Console.WriteLine(rem):

for(int i=0; i < bits.Count; j++)
Console. Write(" {0, -6} ", bits[i]);

Console. WriteLine("\n");

!
public static void Main() {

BitAsray ba = new BitArmay(8); // Demonstrate BitArray
byte[] b= { 67 }; '

BitAmay ba? = new BitAmray(b);

showbits("Original contents of BitAmay:", ba);

ba = ba.Not();

- showbits("Contents of BitArray after Not:", ba):
}

Data Structures Fundamentals ; . - 230

Appendix-B Data Structure in C Sharp (C¥) ; 231

Sample outpur=
Original contents of BitArray:
False False False False False False False False
Contents of BitArray after Not:
True True True True True True True True

12.1.6 ArrayList

What is ArrayList?
ArrayList is implemented in a class of C Sharp. Any program can use this
ArrayList by creating an instance of this class for holding the elements.
ArmayList al = new ArrayList();
The elements can be added in the amay in the following way,
al.Add{number);
To get the Amay,

int[] ia = (int[]) al. ToArmay(typeof{int));

Now all the elements are in one dimensional integer array. Anyone can
access or manipulate the armay as like one dimensional Array.

Sample Program=
using System;
using System.Collections;
public class ArrayListToArmay {
public static void Main() {
ArrayList al = new ArmayList();
Console. WriteLine{"Initial 1:;u.mﬂ:ner of elements: " +
al.Count), :
Console. WriteLine();
{f Add elements to-the array list.
al. Add(5);
al Add(6);
al. Add(7).
al. Add(8);

Console, Write("Contents: "); :
foreach(int i in al)

Console. Write(i + " "),

Console. WriteLine(),

Console. WriteLine(" After adding Mumber of elements: " +

al.Count);
Console. WriteLine();

{f Get the armay.
int[] ia = (int[]) al. ToArray(typeof(int));
int sum=10; -
/{ sum the array
for{int i=0; i<ia.Length; i++)
sum += iafi];
Console, WriteLine{"Sum is: " + sum);

Sample output=
Initial number of elements: 0
Contents: 5678
After adding number of elements: 4
Sum is: 26

12.2 Pointers
A pointer is a data type whose value refers directly to (“points to™) another
value stored elsewhere in the computer memory using its address. Thus the
pointer has an address and contains (as value) an address. Obtaining the
value that a pointer refers to is called dereferencing. The dereference
operator is *. Pointers in C sharp is declared in the following way,
int* p;

The value can be assigned in this pointer in the following way,

int 1 = "number”;

p=&number;

p=&i

Dereferencing of pointers is done in the following way,

int r= *g;

Data Structures Fundamentals 232 Appendix-B Data Structure in C Sharp (C#)

233

The linked list class is described below,

Sample Program= using System;
using System; elass Node |
class Pointers internal Object data;
! internal MNode next;
public static unsafe void Main() public Nede{Object o, Node n){
(data = o;

next = n;
inti=15; }
int* p = &i; // declare pointer and assignment to address of i }
int j = 15; public class LinkedList {
int* q = &j; private Node head;
boel b2 = {(p==q), private Node previous;
Console. WriteLine("b2 = " + b2); Fﬂ:;:elfn:;c;r:;;:

1 ={i==i}) pu i 15

TRl i head = null;

Console. WriteLine("bl =" + bl});
/f dereferencing pointers

previous = null;
current = null;

intr=*q; H
Console. WriteLine{"r=" +1r); public bool IsEmpty(} {
} return head == null;
y }
ublic void Insert(Object o

ARl gutpi e Pﬂude n = new I:It[ndo{Jn,cur::Lt};

= falie if (previous == null)

by = true head = n;

r=15 else

previous.next = n;
12.3 Linked list current = n;
LinkedList is implemented in a class of C Sharp. Any program can use this 1 Tn— o0 |
g ; : : ; ; public void Remov

LinkedList by creating an instance of this class for holding the elements. if (head 1= null){

LinkedList list = new Lin#edLisl{};

\ if (previous == null)
The elements can be added in the List in tﬂﬂ following way,

head = head.next;

list.Insert{number/String); / olge

To get the elements, // d previous.next = current.next;
List.GetData(); / current = current.next;

To display the elements, ; p)
List Display();)

public Ohject GetData{){

Data Structures Fundamentals

23

- Appendiz-B Data Structure in C Sharp (C#) 235

if {current != null) I
return current.data;
return null;
!
public bool AtEnd() {
return current == null;
i
public void Advance(){
if (! AtEnd()){
Previous = current;
current = current .next;

H
H
public void Reset() {
previous = null;
current = head;
J
publie void Display(} {
Reset();
if (head != null)
do |
Console WriteLine(" [0}", GetData());
Advance();
1while (| AtEnd());
H

In this linked list class a node is created using
MNode n = new Node{o, current);

Where o is an object and current is Node type variable. An internal node cin
be created by the following syntax,
internal Node next,
This internal node is be used in the following way,
~ current = current.next;

Example: The program that uses the LinkedList Class and stores the
elements and displays accordingly.
- Sample Program=
Using System;
Using System.Collection;
' public static void Main() {
LinkedList list = new LinkedList();
Console. WriteLine("Is Empty {0}" list.IsEmpty());
list.Insert(" AB");
list.Insert("BC");
list.Insert("CA");
Console WriteLine{" The original list is:");
list. Display();
list. Reset();
list. Advance();
Console. WriteLine("The current element is {0} " list.GetData(});
list. Removel);
list.Display();
}
'

Sample output=
The Original list is:
CA
BC
AB
The Current element is BC

12.4 Stacks
Stack is implemented in a class of C Sharp. Any program can use this Stack
by creating an instance of this class for holding the elements.

Stack stackl = new Stack();

Data Structures Fundamentals

The elements can be addqd in the Stack in the following way,

stackl.Push{number/String);
To get the elements,
stack1.Pop();
To display the top elements,
stackl.Top();

The Stack class is described below,
using System;
public class Stack |

private int{] data;

private int sizc;

private int top = -1;

public Stack() {
size = 10;
data = new int[size];
}
public Stack{int size) |
this.size = size;
data = new int[size];
}
public bool sEmpty() {
return top = -1;
H
public bool IsFull() {
return top == size - 1;
}
public void Push(int i)
if (IsFull())
throw new ApplicationException{"Stack full™):
else
data[++top] = i;

} /
public int Pop(){ - {
if (IsEmpty()) [

throw new StackEmptyException(" Stack empty");
else

Appendix-B Data Structure in C Sharp (CH#) 237

return data(top--];
}
public int Top(){

If (IsEmpty())

throw new StackEmptyException("Stack empty");
else

return data[top];

}

The stack is implemented using Amay. The elements are inserted and
accessed in the Last in First Out way.

Example: The program that uses the Stack Class and stores the elements and
displays accordingly.

Sample Program=
Using System;

Using System.Collection,

public static void Main() {

try {
Stack stackl = mew Stack();
stack1.Push{45);

stackl.Push{55);
Console. WriteLine(" The top is now {0}", stackl.Top());
stackl.Push{66);
Console. WriteLine{"Popping stack returns {0}", stackl.Pop());
Console. WriteLine{"5tack 1 has size {0}", stackl.size),
Console. WriteLine("Stack 1 empty? {0}", stackl.IsEmpty(});
stackl.Pop();
Console. WriteLine(" Throws excepfion before we get here"),
eateh(Exception e} {

Console. WriteLine(e);

S i e Appendix-B Data Structure in C Sharp (C#) 239

class StackEmptyException : ApplicationException {
public StackEmptyException(String message) : base(message) {
}

}

Sample output=
The Top is Now 55
Popping Stack returns 66
Stack 1 has size 10
Stack 1 empty? False
Throws exception before we get here

public Queue(int size) {
this.size = size;
data = new int[size];
}
public bool IsEmpty(]) {
return count==1[0;
}
public bool IsFull() {
return count = size;
H
public void Add(int i){
if (IsFuli(})
throw new ApplicationException("Queue full");
else |
count++;
data[back-+ % size] = i

}

12.5 Queue
Queue is implemented in a class of C Sharp. Any program can use this
Queue by creating an instance of this class for holding the elements.
Queue queuel = new Queue();
The elements can be added in the Stack in the following way,
quenel add(number/String);
Tao get the elements,

}
queuel Remove(); ;
To display the front elements, F;:T::Emt RJ:;";WEU{
mpty .
llH d : o "y,
i throw new ApplicationException("Queue empty");
The Queue class is described below, clse {
A
using Systen; count-—; :
public class Queue { return data[-++front % size];
private int{] data; t
private int size; 1 o
private int front=-1; public int Head(){
if (IsEmpty()){

private int back = 0;

private int count = (; throw new ApplicationException("Queue empty"),

}

i Else ¢
public Queue() { , i v
size = 10; o return data[(front+1) % size];
data = new int[size]; ;,/ }

The Queue is implemented using Array. The elements are inserted and

} | . accessed in the First in First Out way.

Data Structures Fundamentals 240}

Appendix-B Data Structure in C Sharp (C#) I 241

Example: The program that uses the Queue Class and stores the elements
and displays accordingly.

Sample Program=
Using System;
Using System.Collection:
Public class QueueDemo |
public static void Main{) {
try {
Queue q1 = new Queue();
ql.Add({44);
ql.Add(55);
Console. WriteLine("The front is now {0}", q1.Head());
ql.Add(6);
Console. WriteLine("Removing from q1 returns {0}", ql.Remove());
Console WriteLine("Queue 1 has size {0}", ql.size);
Console. WriteLine("Queue 1 empty? {0}", q1.IsEmpty());
ql.Remove();
Console.WriteLine("Throws exception before we get here™);
teatch(Exception ¢) {
Console, WriteLine{e);
1
}
}

Sample ontput=
The front is Now 44
Removing from ql returns 44
Queue 1 has size 10
Queue 1 empty? False
Throws exception before we get here

12.6 Hashing
Hashing is done using Hashtable which is implemented in a class of C Sharp.
Any program can use this Hashtable by creating an instance of this class for
holding the elements.
Hashtable ht = new Hashtable();
The elements can be added in the Stack in the following way,
ht.add{number/String);

Can also be added by using indexer,

ht["key"] = "value";
Here key indicates based on keys values are hashed or will be found out.
To get the keys, :
htkeys();

To display the elements,
‘Console.writeline(ht[key]);

Example: The program that uses the Hashtable Class for Hashing and stores
the elements and displays accordingly. '

Sample Program=
using System;
using System Collections;

public class HashtableDemo §{
public static void Main() {
{/ Create a hash table.
Hashtable ht = new Hashtable(); // Demonstrate Hashtable.

/ Add elements to the table

ht. Add("h", "Dwelling");

ht.Add{"c", "Means of transport");
ht.Add("b", "Collection of printed words");
ht.Add{"a", "Edible fruit");

/f Can also add by using the indexer.
ht["t"] = "farm implement";

- Data Structures Fundamentals : 242

Appendix-B Data Structure in C Sharp (C#) 243

i Get a collection of the keys.
ICollection ¢ = ht.Keys;
/f Use the keys to obtain the values,
foreach(string str in) :
Console. WriteLine(str + " " + ht[str]);
i
}

Sample output=
b: Collection of printed words
t: farm implement
a: Edible Fruit
h: Dwelling
¢: Means of transport

12.7 Sorting
There is a method named sorf in C Sharp by which sorting can be done in an
ascending order. The Syntax is,
Array.Sort (Arr);
For descending order,
Array. Reverse (Arr);
Where A is the name of the Array to be sorted.

Example: The program that takes randomly some unsorted elements and
sorts them in the ascending order,

Sample Program=
public class Sort
i
static public void Main ()
{
DateTime now = DateTime. Now;
Random rand = uew',Ra.ndom ({int) now Millisecond);

int [] Arr = new int [12];
for (int x = 0; x < Arr.Length; ++x)
{
Arr [x] = rand.Next {) % 101;
}
Console WriteLine ("The unsorted armay elements:");
foreach {int x in Arr)
{

Console. Write (x + " ");

}
Amay.Sort (Arr);

Console. WriteLine ("\r'n\rf'\nThe array sorted in ascending order:");

foreach {int x in Arr)
{

Console.Write (x +" ");

;
Amay Reverse (Arr);

Console. WriteLine ("\r\n\r\nThe array sorted in descending order:");

foreach (int x in Arr)

{

Console. Write (x + " ");

Sample outpui=

The unsorted Array elements:

7583 1630 52 43 50 79 96 B4 69 §2
The array Sorted in ascending order:
16 30 43 50 52 69 75 79 B2 83 84 %6

. Data Structures Fundamentals 244

12.7.1 Bubble sort

Example: Use of Bubble sort for sorting unsorted elements in the ascending
order.

Sample Program=
using System;
public class BubbleSort |
public static void Main() {
int[] nums = { 99, -11, 100123, 18, -978,
5623, 463, -10, 287,49 };
inta, b, t;
int size;
size = 10; #/ number of elements to sort
/f display original array
Console. Write(" Original array is:");
for(int i=0; i < size; i++)
Console. Write(" " + nums[i]);
Console. WriteLine();

/f This is the bubble sort.
for{a=1; a < size; at++)
for{b=size-1; b >= a; b--} {
if{nums([b-1] > nums[b]) { // if cut of order
/! exchange elements
t = nums[b-1];
nums[b-1] = nums[b];
nums[b] =t;
'
)

display sorted array

Console. Write{"Sorted array is:");

for{int i=0; i < size; H+)
Console. Write(" " + nums[i]);

Console. WriteLine();

Appendix-B Data Structure in C Sharp (C#) 245

Sample output= -
Original Array is:
99 -11 100123 18 -978 5623 463 -10 287 49
Sorted Array is:
-978 -11 -10 18 49 99 287 463 5623 100123

12.7.2 Quick sort

Example: Use of Quick sort mechanisms for sorting unsorted elements in
the ascending order.

Sample Program=
using System;
class Quicksort {

#f Set up a call to the actual Quicksort method.

public static void gsort(char(] items) {
qs(items, 0, items. Length-1);

}

A recursive version of Quicksort for characters.
static void qs(char[] items, int l=f, int right)
{

int i, j;
char x, v;
i = left: j = right;
x = items[(left+right)/2];
do {
while((items[i] < x) && (i < right)) i++;
while((x < items[j]) && (j > left)) j—;
if(i<=j){
y = items]i];
itemsfi] = items[j];
items[j] = y;
i+ -~
}
} while(i <= j);
if(left < j) gs(items, left, j);
}ﬂ'{i < right) gs(items, i, right);
!

Data Structures Fundamentals 244

The class that uses the quick sort class by creating an instance of that
class is described below.

public class QSDemo {
public static void Main() {
char[Ja={'¢, 'y, "2\ "",p, 1\ i'};
int i;

Console. Write("Original array: ");
for(i=0; i < a.Length; i++)
Console. Write(a[i]);

Console, WriteLine();
{f now, sort the array
Quicksort.qsort(a);

Console. Write{"Sorted array: ");
for(i=0; i < a.Length; i++)
Console Write{a[i]);
}
H

Sample output=
Original Arra:.r is: eyarpji
Sorted Array is: aeijpry

12.7.3 Merge sort
Example: Use of Merge sort mechanisms for sorting unsorted tlmm-.nts in
the ascending order.

Sample Program=
using System;
public class MergeSort {
public static void Snn {int[] data, int l:ﬁ., int right) {
If (left < right) {

Appendix-B Data Structure in C Sharp (C#) 247

int middle = (left + right)/2;

Sort{data, left, middle);

Sort{data, middle + 1, right);
Merge(data,left, middle, middle+1, right);

1

p::lblic static void Merge(int[] data, int left, int middle, int middlel, int right) {
int oldPosition = left;
int size = right - left + 1;
int[] temp = new int[size];
inti=0;
while (left <= middle && middlel <= right) |
if {data[left] <= data[middlel])
temp[i++] = data[lefi++];
else
temp(i++] = data[middlel++];

if (left > middle)
for (int j = middlel; j == right; j++)
temp[i++] = data[middiel++];
else
for (int j = left; j == middle; j++)
temp[i++] = data[left++];
Armay.Copy(temp, 0, data, oldPosition, size);

The class that uses the quick sort class by creating an instance of that
class is described below.

public static void Main {String[] args) { 5
int[] data = new int{]{2,3,1,6,3,98,4,6,4,3,45};
for (int i = 0; i < data.Length; i++) {
Console. WriteLine(data[i]);

!

Sort(data, 0, data.Length-1);

for (int 1 = 0; 1 < data.Length; i++) {
Console. WriteLine(data[i]);

Data Structures Fundamentals ' 248

Sample output=
Original Arrayis: 2316398464345
Sorted Arrayis: 1233344664598

12.7.4 Insertion sort

Example: Use of Insertion sort mechanisms for sorting unsorted elements in
the ascending order.

Sample Program=
public class InsertionSort |
public static void InsertNext(int i, int[] item) {
int current = item[i];
intj=0;
while (current > item[j]) j+;
for (intk=i; k> j; k--)
item[k] = item[k-1];
item([j] = current;
1
public static void Sort(int{] item) {
for {inti=1; i < item.Length; i++) {
InsertNext(i, item);
H
i

The class that uses the Insertion sort class by creating an instance of
that class is described below,

public static void Main() {
int(] item = new int(]{8,1,2,6,3,6,3,6,4,1,2,0};
for(int i=0; i<item.Length;i++){
Console.WriteLine(“Original Array is:"item([i]);
Sort(item);
for(int i=0; i<itern.Length;i++){
Console. WriteLine{*Sorted Array is:"item[i]);
h
h
i

Appendix-B Data Structure in C Sharp (C#) 249

Sample output=
Original Arrayis: 812636364120
Sorted Arrayis: 011223346668

12.7.5 Sorted list
SortedList is implemented in a class of C Sharp. Any program can use this
SortedList by creating an instance of this class for holding the elements.

SorntedList al = new SortedList();
The elements can be added in the amay in the following way,

al .P;dd(key,num.berfs:ring];
To get the value by Key,
string my = (string) al [key];
To pet the value by Index,
string another = (string) al .GetByIndex(index_number);

Now all the elements are in one dimensional integer array. Anyone can
access or manipulate the array as like one dimensional Array.

Example: Use of Sorted List for sorting unsorted elements.

Sample Program=

- using System;

using System.Collections;
public class Examplell 8

{
public static void Main()

{
{/ create a SortedList object
Sortedl ist mySortedList = new SortedList();

add elements containing US state abbreviations and state
{f names to mySortedList using the Add() method

mySortedList Add{"N", "New York");
mySortedList Add("F", "Florida"}),
mySortedList. Add("A", "Alabama");

Data Structures Fundamentals

o 250

mySortedList. Add("W", "Wyoming");
mySortedList. Add("C", "California");

/f get the state name value for "CA"
string myState = (string) mySortedList["C"];
Console.WriteLine("myState = " + myState);

i/ get the state name value at index 3 using the GetByIndex() methcd
string anotherState = (string) mySortedList. GetByIndex(3);
Console. WriteLine("anotherState = " + anotherState);

/I display the keys for mySortedList using the Keys property
foreach (string myKey in mySortedList.Keys)
{
Console.WriteLine("myKey = " + myKey);
} ,
/I display the values for mySortedList using the Values property
foreach(string myValue in mySortedList. Values)
{
Console. WriteLine("myValue = " + myValue):
}
}

Sample output=
myState=California
anotherState=New York
myKey=A
myKey=C
myKey=F

myKey=N
myKey=W
myValue=Alabama
my V¥alue=California
myValue=Florida

mvalifﬂw York
myValue=Wyoming

Appendix-B Data Structure in C Sharp (C#) 251

12.8 Searching
12.8.1 Binary searching _ ;
Example: Use of Binary Search for finding out the index by using some key.

Sample Program=
using System;
public class BinarySearch {
public static int Search (int[] data, int key, int left, int right) {
if (left <= right) {
int middle = (left + right)/2;
if (key == data[middle])
return middle;)
else if (key < data[middle])
return Search(data, key,left, middle-1);
else
return Search{data key,middle+1,right);
I3 :
return -1;
}

The class that uses the Binary search class by creating an instance of
that class is described below.

public static void Main(String[] args) {
int key; ! the search key
int index; // the index returned
int[] data = new int[10];

for(int i = 0; i < data.Length; i++)

data[i]=1i;
key=5;
index = Search{data, key, 0, data.Length-1);
if (index == -1)
Console.WriteLine("Key {0} not found", key);
Else

Console. WriteLine ("Key {0} found at index {1}", key, index);
}
}

Sample output=
Key 5 found atindex 5

Data Structures Fundamentals 252

12.9 Set ;
We are familiar with mathematical Set from higher mathematics. The set
data structure in C sharp is almost like that where the set contains some
elements and elements can be added and subtracted from the set where
addition here indicates the union operation of set. The algorithm of set data
Structure is given below,

using System;
using MyTypes.Set;
namespace MyTypes.Set {
class Set {
char[] members; // this array holds the set
int len; /f number of members

/i Construet a null set.

public Set() {
len=10;

}

{/ Construct an empty set of a given size.

public Set{int size) {
members = new char(size]; // allocate memory for set
len =0; /f no members when constructed

}

Construct & set from another set.

public Set{Set s) {
members = new char(s.len]; // allocate memory for set
forf{int i=0; i < s.len; i++) members[i] = s[i]; .
len = s.len; # number of members

;

{f Implement read-only Length property.
public int Length {

get{ TN
return len; |

) i

Appendix-B Data Structure in C Sharp (C#) 253

/f Implement read-only indexer.

public char this[int idx]{
get {

iffidx >= 0 & idx < len) return members[idx];
else return (char)0;
¥

}

/* See if an element is in the set,
Retumn the index of the element
or -1 if not found. */

int find(char ch) {
int i;
for{i=0; i < len; i++)

if{members[i] = ch) return i;
return -1;
}

/ Add a unique element to a set.
public static Set operator +({Set ob, char ch) |

Set newset = new Set{ob.len + 1); // make a new set one element larger

i copy elements
for(int i=0; i < ob.len; i++)
newset.members[i] = ob.members[i];

/ set len
newset.len = ob.len;

 see if element already exists

ifiob.find{ch) == -1) { // if not found, then add
/l add new element to new set
newset. members[newset len] = ch;

newset.len++;

}
return newset; // return updated set

Data Structures Fundamentals

254

#/ Remove an element from'the set.
public static Set operator -(Set ob, char ch) {
Set newset = new Set();
int i = ob.find(ch); // i will be -1 if element not found

/! copy and compress the remaining elements
for{int j=0; j < ob.len; j++)

ifi(j != i) newset = newset + ob.members[]];
return newset;

b

/! Set union.
public static Set operator +{Set obl, Set ob) {
Set newset = new Set{obl); / copy the first set

/! add unique elements from second set
for({int i=0; i < ob2.len; i++)

newset = newset + ob2[i];
return newset; /f return updated set

}

/I Set difference.
public static Set operator -(Set obl, Set ob2) {
Set newset = new Set(obl); // copy the first set

/! subtract elements from second set

for{int i=0; i < ob2.len; i++)
newsel = newset - ob2[i];

return newset; /f retumn updated set

!
}

;

Appendix-B Data Structure in C Sharp (C#) 255

Example: Use of Set data Structure (Addition, Subtraction). -

Sample Program=
The class that uses the Binary search class by creating an instance of
that class is described below.

/f Demonstrate the Set class.
public class SetDemol 0 {
public static void Main() {
construct 10-element empty Set
Set 5] = new Set();
Set 52 = new Set();
Set 53 = new Set();

sl =51 +'AY
sl =sl +'BY
sl =s1 +'C}

Console.Write{"s] after adding A B C: ");
for{int i=0; i<sl Length; i++)

Console. Write(s1[i] + " "};
Console. WriteLine();

sl =3l - 'BY
Console. Write("s1 after s1 =s1 - "B ");
for(int i=0; i<s1.Length; i++)
Console. Write(s1[i] + " ")
Console. WriteLine{);

sl =sl - 'A"

Console. Write("s1 after s1 =s1 -'A" ");

for{int i=0; i<sl.Lenpth; i++)
Console.Write(s1[i] +" ")

Console.WriteLine();

sl =sl -'CY; et
Console. Write{"s1 afteral =s1 -'C": ");

Data Structures Fundamentals 2560 Appendix-B Data Structure in C Sharp (C#) 257

for(int i=0, i<sl.Length; i++) {
Console. Write(s1[i] + " "); public T Value;
Console. WriteLine("\n"); public Node Parent;
public Node Left:
sl =gl +'A" public Node Right;
51 =51 +'B; public Node{T Value)
gl =zl +'C"; {

Console. Write("s] after adding A B C: ");

is.Value = Value;
for(int i=0; i<sl.Length; i++) this. Value alue;

Console Write(s1[i] +" "); } A -
Console. WriteLine(); public Node(T Value, Node Parent)
H
Console. Write{"s] is now: "); this.Value = Value;
for(int i=0; i<sl.Length; i++) _ this.Parent = Parent;
Console Write(s1[i] + " "); }
Console. WriteLine(); ¥
} public struct AscendingOrderEnumerator : [Enumerator<T>
} {

private T _Current;
Sample output=

public T Current
51 after adding ABC: ABC f
51 after s1=51 -"B": A C get
51 after s1=s1 -"A"; C {

81 after sl1=s1 -"C": retumn this._Current;

51 after adding ABC: ABC }
- Blismow: ABC public bool MoveMext()

{
12.10 Trees if (this._Next == null)
The Program of Binary search tree is deseribed below: {
’ ; : return false;

using System; }

public sealed class BinarySearchTree<T> : ICollection<T> where T :

IComparable<T=> e (.

{

internal sealed class Node

Data Structures Fundamentals 258 Appendix-B Data Structure in C Sharp (C#) 259
this._Current = this. Next.Value; public int Count
{ 3
if (this. Next.Right == null) get
{ {
while{(this. Next Parent != null) && return this. Count;
(this. Next == this._Next.Parent.Right}) ¥
{ }
this._Next = this._Next.Parent; public bool Add(T Item)
} {
~ this,_Next = this._Next.Parent; if (Item == null)
h {)
else : throw new ArgumentNullException();
{ H
for(this._Wext = this._Next.Right; this._Next.Left != null; ' if (this. Root = null}
this._Next= this._Next.Lefi); {
L : this._Root = new Node(Item);
} »
retumn true; Sigd
} . i
i i ' de Nod
;ntemnl AscendingOrderEnumerator{Node Node) for(Node p = this. Root; ;)
{ :
if (Mode != null :
]{ (No null) int Cnmpamré Itcm.CumpareTa{p.Value);
while (Node.Left != nuil) if (Comparer < 0)
{ {
Node = Node.Left; if {(p.Left != null)
{
} p=p.Lefi;
}
this. Next else
this. {

p.Left = new Node(Item, p);

} break;

private Node _Root;
private int _Count;

Data Structures Fundamentals

- 260

Appendix-B Data Structure in C Sharp (C#)

261

else if (Comparer = 0)
{
if (p.Right != null)
{
p=pRight;
1

else

{
p.Right = new Node(Item, p);

break;
}
}
else
{
: return false;
f
}
}
this. Countt+;
retum true;
1
public void Clear()
{
this._Root = null;
this. Count =0

}
public bool Contains(T Item)

d

if (Itern == null}

d

throw new ArgumentNullException(};

for (Node p = this. Root; p = null:)]
{

int Comparer = Item.CompareTo(p. Value);

if (Comparer < 0)
{
p = p.Left;
H
else if (Comparer = 0)
{
p = p-Right;
}
else
{
retumn true;
}
}
return false;
1
public void CopyTo(T[] Array, int Index)
{
if (Array = null)
{
throw new ArgumentNullException():
} ;
if ((Index < 0) || (Index >= Array.Length))
{
throw new

ArgumentOutOfRangeException();

}

if ((Array.Length - Index) < this. Count)
{
throw new ArgumentException();

Data Structures Fundamentals 202

if (this. Root != null)
{
Mode p = this,_Root;

while (p.Left != null)
{
p=p.Left;

Array[Index] = p.Value;

if (p.Right == null)
i
for(;;)

{
if (p.Parent == null)

{

returmn,

if (p = p.Parent.Right)
{

break,
H

p = p.Parent,

p = p.Parent;

Appendiz-B Data Structure in C Sharp (C#)

263

else

i
for (p = p.Right; p.Left != null; p = p.Left);
H

Index++;

H
public AscendingOrderEnumerator GetEnumerator{)

{

refurm new

AscendingOrderEnumerator(this. Root);

!
public bool Remove(T Item)
i

if (Item == null)

{

throw new ArgumentNullException();

}
for (Node p = this._Root; p != null;)
{
int Comparer = Item.CompareTo(p. Value);
if (Comparer < 0)
{
p = p.Left;
H
else if (Comparer = 0)
1
p = p-Right;
}
else

{
if (p.Right = null)

Data Structures Fundamentals

264

Appendix-B Data Structure in C Sharp (C#) 265

// Case 1: p has no right child

if (p.Left != null}
{
p-Left Parent = p.Parent;

b

if (p.Parent == null)

i
this. Root = p.Left;

b

else

{

if (p == p.Parent.Lefi)
{

p-Parent.Left = p.Lefi;

b
else

{
p.Parent.Right = p.Left;

]

!
else if (p.Right.Left == null)

{f Case 2: p's right child has no left child

if (p.Left = null)
{

p.Left.Parent = p.Right;
p-RightLeft = p.Lefi,

}
p.Right.Parent = p.Parent;

if (p.Parent == null)
i

this. Root = p.Right;
;

else

{

if (p == p.Parent Left)
{

p.Parent Left = p.Right;

}
else
{

p-Parent Right = p.Right;
i

else

/l Case 3: p's right child has a left child

MNode s = p.Right Left;
while (s.Left = null)
!
s = 5. Left;
i

if(pLeft!=null)
|
p.Left.Parent = 5;

s.Left=pLeft;
!

s.Parent Left = s Right;

Data Structures Fundamentals / 26ty

if (s.Right !'= null)
{
s.Right.Parent = 5. Parent;

}
p-Right.Parent = 5;
s.Right = p.Right;

s.Parent = p Parent;

if {p.Parent == null)
{

this. Root=s;

}

else

{
if (p == p.Parent.Lefi)
{

p-Parent Lefi = 5;
}

else

{

p-Parent.Right = 5,
i

}

this. Count--;
retumn true;

}

return false;

public BinaryScarchTree{)

Appendix-B Data Structure in C Sharp (CH) 267
i
this. Root = null;
this. Count =
i
12.11 Graph

The Graph class has a number of methods for adding nodes and directed or
undirected and weighted or unweighted edges between nodes.” The
AddNode() method adds a node to the graph, while AddDirectedEdge() and
AddUndirectedEdge() allow a weighted or unweighted edge to be associated
between two nodes.

In addition to its methods for adding edges, the Graph class has a Contains()
method that returns a Boolean indicating if a particular value exists in the
graph or not. There is also a Remove() method that deletes a GraphNode and
all edges to and from it The relevant code for the Gmpﬁ class is shown
below,

public class Graph<T= : [Enumerable<T> {

private NodeList<T> nodeSet;

public Graph() : this(nuil) {}

public Graph{NodeList<T> nodeSet) ;

{ if (nodeSet == null) this.nodeSet = new NodeList<T=(); else this.nodeSet

= nodeSet; } public void AddNode(GraphNode<T= node)
&

nodeSet. Add{node); } public void AddNode(T value) |

{/ adds a node to the graph

nodeSet. Add{new GraphNode<T={value)); ‘:- public void
AddDirectedEdge(GraphNode<T=> from, GraphMode<T=> to, int cost)

{ from.Neighbors.Add(te); from.Costs.Add(cost); }

public void AddUndirectedEdge(GraphNode<T> from, GraphNode<T= to,
int cost)

Data Structures Fundamentals 268

{ from.Neighbors. Add(to); from.Costs. Add(cost); to.Neighbors. Add{from);
to.Costs. Add(cost); | 1

public bool Contains(T value)

{

return nodeSet FindBy Value(value) = null; }

public bool Remove(T value)

{

/ first remove the node from the nodeset
GraphNode<T> nodeToRemove = (GraphMode<T=>)
nodeSet FindBy Value(value);

if (nodeToRemove = null)

// node wasn't found return false, otherwise, the node was found
ncdeSeLRmmw{nod:TnRemnve}; // enumerate through each node in the
nodeSet, removing edges to this node

foreach (GraphNode<T> gnode in nodeSet)

{ int index = gnode.Neighbors.IndexOfinode ToRemove); ;
if {index '=-1})

{

// remaove the reference to the node and associated cost
gnode.Neighbors.RemoveAt(index);

gnode.Costs Remove At{index);

}

} return true;

H
public NodeList<T> Nodes { get { return nodeSet; } }
public int Count { get { return nodeSet.Count; } }

1
I

Appendix-B Data Structure in C Sharp (C#) 269

Summary:

In this chapter we have shown different types of operations on array, linked
list, stack, queue, tree etc. These operations are depicted in algorithms or
programs using C Sharp.

¥ One dimensional array in C sharp is declared as int]] amay_name=new
int [length_of amay]. Two dimensional array is declared as int [,]
array_name=new int [row_number, column_number]. Multi dimensional
array is declared as int [,] amay name ={{numbe_l,number 2},
{number_3,number_4},................, {number_n-1, number n}i.
Jagged armay consist several amays. It is declared as int [] []
array_name=new int [number_of arrays] []. And lastly for accessing
individual bits, Bit array is used. The syntax for creating a Bit array is
BitArray array_name=new BitArray(number_of_bits).

® An AmayList is a special kind of data structure. It stores information in
an array that can be dynamically resized. This data structure in C Sharp
contains methods that assist the programmer in accessing and storing
data within the ArrayList.

¥ Pointers in C sharp is declared as int* p; In C sharp, Linked List is
implemented in a class. In Programs Linked List can be used by creating
an instance of this class.

» A program can use stack by creating an instance of stack class and in
similar way the program can use queue by creating an instance of queue
class.

» In C Sharp, Hashing needs Hash tal;nle. Hash table is implemented in a
class.

Appendix-B Data Structure in C Sharp (C#) 21

Data Structures Fundamentals 270

» Sorting can be done by using a method named “sort” in C sharp, Bubblc
sort, quick sort, Insertion sort ete. class can be implemented. In Any

program, bubble sort mechanism can be used by creating an instance of

Bubble sort class. In the same way, in any program, quick sont
mechanism can be used by creating an instance of quick sort class and
can use Insertion sort by creating an instance of Insertion sort class
SortedList stores information in an armay in the appropriate order. This
data structure in C Sharp contains methods that assist the programmer in
accessing and storing data within the SortedList,

Binary search class is defined in C sharp. So, any program may use
binary search class for searching.

The set data structure in C sharp contains some elements. Elements can
be added and subtracted from the set. Addifion indicates the union

operation of set. Binary search tree is a special kind of tree like data
struciure,

There exist several methods of Graph class in C sharp. AddNode()
method adds a node to the graph, while AddDirectedEdge(} and
AddUndirectedEdge() allow a weighted or unweighted edge to be
associated between two nodes. It contains some other methods. The
methods help to represent the nodes in a graph,

Questions;

What are the different kinds of data structures in C sharp ? Give shon
description to each.
Suppose, SAMPLE is a linear array with n numbers. Write a procedure
which finds the average of the values. The average of the values x; x, v,
X4 ... Xqis defined by,

AVE = (xp, xz X3 Xy X

Each batsman in a cﬁ'cket team of 11 players plays 5 pames in which

scores range between 0 and 50, Suppose the scores are stored ina 11 % 5

array named SCORE, Write a module which

a) Finds the average score for each pame

b) Finds the average of the player’s four highest scores for each player.

c) Finds the number of players who will be climinated for the next
match, i.e., whose average score is less than 10.

What is the difference between array data structure in C and C Sharp ?

What is the difference between Pointers in C and C Sharp ?

A shop keeps track of the serial number and price of its items in arrays

ITEM and PRICE, respectively. In addition, it uses the data structure

stated in figure, which combines a record structure with pointer

variables. Computers, Mobile phones, Cameras are listed together in

ITEM. The wvariables NUMEB and PTR under USED indicates,

respectively, the number and location of different items.

a) How does anyone index the location of the list of Computers in

ITEM?
Write a procedure to print the serial number of all Mobile phones.
1 SHOP ITEM PRICE
2 ITEMS 1 '
3 COMPUTERS 2
4 NUMB
4 PTR

3 MOBILE PHONES
4 NUMB
4 PTR
3 CAMERAS
4 NUMB f
4 PTR

Data Structures Fundamentals 27

11.

12.

13.
14.

What is linked list? How linked list class is implemented in C sharp?
Given an integer I, write a procedure which deletes the Iy element from
a linked list.
Write a program which adds a user given item at the sorted list.
Consider the following stack where stack is allocated N=3 cells,
STACK: A,B,
Describe the stack as the following operations take place,
a) PUSH (STACK,C) b) POP(STACK, ITEM)
¢) POP(STACK, ITEM)
Consider a priority queue which contains 6 elements. Write a Program
which deletes a user specified element in the queue.
How sorting and searching are performed in C Sharp ? Write a program
that can sort elements and apply binary search to find out a user
specified element and remove that from the list.
What is hash table ? How Hashing uses hash table for its processing 7
Suppose the following 7 numbers are inserted into an empty binary
search tree T,
50, 22,33, 44, 35, 60, 77
Draw the tree T,

. Suppose a graph G is input by means of an integer X, representing the

nodes

1,2,....,X and a list of Y ordered pair of the integers, representing the

edges of G.

Write a procedure for each of the following,

a) X x X adjacency matrix A of the graph G
Where adjacent indicates there resides an edge
Test by using the following data,
X=6Y=10(1,6),(2,1),(2,3), (3, 5),(4, 5, (4, 2), (2, 6), (5,
3).(4,3),(6,4)

APPENDIX-C

PRACTICAL ISSUES

OBJECTIVES:
In this chapter we have shown codes of some programs related to the

algorithms written in different chapters. The programs are written in G+
programming language. However no program written in C# and JAVA has
been shown in this chapter, as these are already been stated in Appendix A
{JAVA) and Appendix B (C#).

13.1 ARRAY _
Find out the summation of diagonal elements of a two dimensional array

The following program is based on the Algorithm 2.6 (see Chapter 2).

Program 1:

include <stdio h>
include <conio b=
define size 3

void main ()
clrser ();
int A[size][size], sum = 0;
printf (“Enter the elements of the array:\(");
for (int i = 0; 1 < size; ++i)
{
for { int j = 0; j < size; 4++)
{
scanf (“%d", &A[i][])
}

-

for {i = 0; i < size; ++i) -

Data Structures Fundamentals - ; 27

Appendix-C Practical Issues 275
{ , e In e
for (intj = 0; i <size; ++j) = {
] printf (“Serial No %d: \t", i + 1);
if'(i==j || (i + j) == (size — n)) sum = sum + A0 for(intj=0;j<4;j++)
I E {

H scanf ("%6d”, &marks[i][i]);
printf (*\n\nSummation of diagonal elements: \t%d", sumy; : }
geteh (); o : sz = 0f
} N i min_mrk = marks [i][0];

for (j = 0; j <4; ++j)
Program Output: ' { ‘

sum = sum + marks[i][j];
if min_mrk > marks [i][j]) min_mrk = marks[i][j];
Summation of diagonal elements; 200 J
avg_mrk[i] = float (sum — min_mrk) / 3;
!
printf (“Average marks:\n™);
for (i =0; i <4; ++)
{
printf (“Serial No %d:\t", i + 1);
printf (“%.2\n", avg_mrk[i]);

Enter the elements of the array: 124556 88 12 45 36 25 84

Problem: There are 40 students in a class and 4 class tests for each
student. Find out the average of the best 3 class tests for each student,

This program is written based on Algorithm 2.7 (see Chapter 2),

Program 2:)
include <stdio.h> . tch ();
include <conio h= : f{: ;
o man; O Program Output:
; ' Enter class test marks:
sl SerialNo1: 25122827
int marks[40][4]; Serial No 2: 222519125

float avg_mrk[4]; Serial No3: 2427260
int sum, min_mrk; ...
Averape Marlks:

ial No 1: 26.7 g
printf (“Enter class test marthks:\t"); g::l Ng 2: 24.0

for (int i = 0 i < 40; ++) : _ SerialNo3: 257

Forma-19

Data Structures Fundamentals 276

13.2 LINKED LIST

13.2.1 Creation of linked List

This program is to create a linear linked list. Here we shall write a program
in C++ following the algorithm 4.1 of chapter four. After the declaration of
the node, here we declare the class and use constructor function to create an
empty linked list. In this program we have three functions. First is newnode {
J, which creates a new node. The second function is for making link and
which is named as Iink (). The last one is showdata (), which displays the
data of the linked list. In main (), we declare the necessary variables and
call the functions.

Program 3: Code of program to create a linked list
struct node
{
. intdata;
node *next:
b
class linklist
{
node *list, *nptr, *tptr;
public:
linklist (} {f Constructor
{
list = NULL,;
}
void newnode (int item);
void link ();
void showdata { };
|
void linklist::newnode (int item)
. |
npir = new {node);
npir—data = item;
npir—next= NULL;
}

Appendix-C Practical Issues

n

void linklist :: link {)
{

if (list = NULL)
{
list = nptr;
tptr = nptr;
1
else {
tptr—+next = nptr,
tptr = npir;
}
1
void linklist :: showdata ()
{
node *curptr;
curptr = list;
while (curptr '= NULL)
{
cout <<" " << curptr—data;
curptr = curptr—next;
!
}
int main {)
{
clrser (),
int n, d;
linklist mylist;

cout << "\nHow many nodes you have?t";
cin >> n;
- cout << "\nEntey data for nodes (separated by space):ut";

for (int i = 0; i < n; ++i)
{

cin == d;

Data Structures Fundamentals 278

mylist.newnode (d);
mylistlink ();
}

cout << "nData in the list\";
mylist.showdata ();

getch ();
return 0

}
Program output:

Appendix-C Practical [ssues

279

How many nodes you have? 5
Enter data for nodes: 235665126

Data in the list: 235665126

13.2.2 Search a node from a linked list

Here we shall write a program in C++ following the algorithm 4.2 of chapter
four. To perform searching we have to create the linked list first. So, we
shall use here all the functions that are used in program 1. To perform
searching here, we shall use a function named search ().

Program 4: Code of program for searching a particular node from a
linked list

#include<stdio.h>

#include<iostream h>

#include<conio h>

struct node

{

int data;
node "next;
{H

class linklist

1

node *list, *nptr, *tptr;

public:

linklist ()
{
list=MNULL;
H

void newnode (int item);

void link ();

void showdata ();

void search {int item);

void linklist::newnode (int item)
{
npir = new (node);
-nptr—data = item;
nptr—next = NULL;
}

void linklist :: link ()

{

if (list=—NULL)
{
list = nptr;
tptr = nptr;
}

else {

tptr—snext = nptr;

tptr = nptr;
}

S

Data Structures Fundamentals

280 Appendix-C Practical Issues

void linklist::search (int item)
{
tpir = list;
while (tptr I= NULL)
{
if (tptr—data = = item)

{
cout << "Data found!";
break;
}
tptr = tptr—next;
if (tptr = = NULL) cout << "Data is not in the list™;
h
}
void linklist :: showdata ()
{
node *curptr;
curptr = list;
while (curptr != NULL)
{
cout <<" "<< curptr—data;
curptr = curptr—next;
H
}
int main ()
{
clrser ();
int n, d;
linklist lis;

cout << "\nHow many nodes you have?";
cin >> n;

281

cout << "\nEnter data for nodes:\t";
for (int i = 0; i < n; ++i)

{

cin =>d;

lis.newnode (d);

lis.link ();

!

cout =< "\nData in the list:\";
lis.showdata ();

int item;

cout << "\n'\nEnter the data to be found\t";
cin >> item;

cout << “‘nSearch Result:”;

lis.search (item);

getch ();
return O

]

Program output:

How many nodes you have? 5
Enter data for nodes: 235665126
Data in the list: 235665126
Enter the item to be found: 6

Search Result: Data found!

Data Structures Fundamentals

13.2.3 Delete a particular node from a linked list
This program is according to the algorithm 4.4 of the chapter four. Here
deletion is possible from any part of the list i.e., the first node, the last node
and a node between first node and last node.

Program 5: Code of program for deleting a node from a linked list
#include<stdio h> '

#include<iostream h>

#include<conio, b=

struct node
{
int data;
node *next:
H
class linklist
{
node *list, *nptr, *tptr;
public:
linklist ()
!
list = NULL;
}
void newnode {int item);
void link ();
void showdata ();
void deletion (int item);
i
void linklist::newnode (int item)
{
nptr = new (node);
nptr—data = item;
nptr—next = NULL;

!

Appendix-C Practical Issues ' 283

void linklist :: link ()

{

if (list == NULL)
{
list = npitr;
tptr = nptr,
}

else {
tptr—next = nptr;
tptr =nptr;
}

}

void linklist o showdata ()

{

node *curptr;

curptr = list;

while (curptr != NULL)
{

cout <<" "<< curptr—data;

curptr = curptr—next;
}
}
void linklist::deletion (int item)
{
node *pptr;
Iptr = list;
if (list—=data = item)
{
while (tptr—data != item)
i
if (tptr == NULL)

{

Data Structures Fundamentals 284

Appendix-C Practical Issues 285

cout << "nltem is not found in the list!";
break;
}
PPir = tptr;
tptr = tptr—next;
'
Ppir—next = iptr—next;

delete (tptr);
}
else {
list = list—next;
delete (tptr);
H
1
int main [)
{
clrser ();
int n, d;
linklist lis;
cout << "\nHow many nodes you have?\t";
cin == 1

cout << "\nEnter data for nodes:\t";
for (inti=0; i < n; ++)

{

cin >> d;

lis.newnode (d);

lis.link (};

}
cout << "nData in the list:\t";
lis.showdata (J;
char ans;
cout << "\n\nDo you want to delete a node?\t":
cin == ang;

if (ans=="y' || ans =="Y")

{

nt x;
cout << "\n\nEnter the node value to be deleted:\t";
cin == x;
lis.deletion (x);
cout =< "\n\nData in the list:\t";
lis.showdata ();
H

getch ();

retum 0;

}

Program output:

How many nodes you have? 5
Enter data fornedes: 2356635126
Data in the list: 235665126
Enter the node value to be deleted: 63

Updated list: 23 56 126

13.2.4 Arrange data of a linked list

To sort the data of the nodes in a linked list the following function can be
effectively used. Here, data is to be soned in ascending order. This program
is based on the principle of algorithm 4.5 of chapter four.

Program 6: Code of program for arranging data of a linked list
#include<stdio.h>

#include<iostream.h>

#include<conio b=

Data Structures Fundamentals

286

Appendix-C Practical [ssues

287

struct node
{
int data;
node *next;

h

class linklist
{
node *list, *nptr, *tptr;
public:
linklist ()
{
list= NULL;
}
void newnode (int item);
void link ();
void showdata ();
void sort (int item);

L

void linklist::newnode (int item)
{
npir = new (node);
nptr—data = item;
nptr—next = NULL;

}
void linklist :: link ()

{

if (list == NULL)
{
list = nptr;
tptr = nptr;
i

else {
tptr—next = npir;
tptr = nptr;
}

}

void linklist :: showdata ()

1

node *curptr;

curptr = list;

while (curptr != NULL) -
{

cout <<" "<< curptr—data;
curptr = curptr—next;

'
'

void linklist::sort ()

{

node *pptr, *fptr;
pptr = list;

while (pptr != NULL)

{

fptr = pptr—next;

while (fptr != NULL)

{
if (pptr —data > fptr—data)
i
{linterchange (pptr—data, fptr—data)
int temp;
temp = pptr—data;
pptr—data = fptr—data;
fptr—data = temp;
}

fptr = fptr—next;

H

Data Structures Fundamentals

288

Appendix-C Practical Issues 289

Ppir = pptr—next,
}
}
int main ()
{
clrser {);
int n, d;
linklist lis;
cout << "\nHow many nodes you have?\t";
cin == n;
cout << "\nEnter data for nodes:\";
for (inti=0; i <n; ++i)
{
cin >= d; :
lis.newnode {d);
lis.link ();
}
cout << "\nData in the list: [before sort]w";
lis.showdata ();
lis.sort ();
cout << "\n'nData in the list [after sort]:\t";
lis.showdata ();
getch (),
return (;

'

Program output:

How many nodes you have? 15

Enter data fornodes: 12652189456515192932541893

Datainthelist: 12652189456515192932541893

Do you want to sort the list? Y

Sorted List: 1239121518 19203245 54 65 65 89

13.3 DOUBLE LINKED LIST
13.3.1 Creation of a double linked list
This program is according to the algorithm 4.6 of chapter 4.

Program 7: Program Codes for creating a double linked list
struct node

{

node *back;

int data;

node *next;

1

class linklist

{
node *list, *nptr, *tptr;
public:
linklist {)
{
list= NULL;
}

void newnode (int itemn);
void link { J;

void showdata {);

8

void linklist::newnode (int item)
{

nptr = new {node};
nptr—back = NULL,;
npir—data = item;
nptr—next = NULL;

}

Data Structures Fundamentals 290 Appendix-C Practical Issues 191

id linklist :: link
s St) for (inti=0; i < n; ++)

{
if (list==NULL) g.
(cin == d;
(o mylist.newnode (d);
g mylist.link ();
tptr = nptr;
) }
else { cout << "\nData in the lst\t";
tptr—next = nptr; mylist.showdata ();
npir—back = tpir;
tptr = nptr; getch ();
4 return 0}
} }
void linklist :: showdata (} Program oulput:
{ How many nodes vou have? 5
node *curptr;
curptr = list: Enter data for nodes: 236 652 125 653 265
hil = L
- “{"”;W NULL) Data in the lis: 236 652 125 653 265
cout << " " << curptr—data;
curptr = curptr. = ;
:_““" ApaNE | 134 STACK
) 13.4.1 Creation of a linked based stack .
it s () This algorithm is according to the algorithm 5.3 of the chapter five.
{ Program 8: Code of program for creating a linked based stack
clrscr (); #include<stdio.h=
#include<iostream. h>
int o, d; #include<conio.h=
linklist mylist;
struct node
cout << "\nHow many nodes you have?yu"; i
cin >>n; int data;
node *next;

cout << "\nEnter data for hodes (separated by space):\t";

1.
Is

Foenna-2i

Data Structures Fundamentals

Appendix-C Practical [ssues

293

class stack
{
node *top, *newptr;
public:
stack ()
{
top = NULL;
'
void newnode (int item);
void push (j;
void show ();
M
void stack::newnode (int item)
{
newptr = new node;
newptr—data = item;
newptr—next = WULL;

}
void stack::push ()

{
if (top = = NULL) top = newptr;
else {
newptr--+next = 1op;
lop = newpir;
1

}

void queue::show ()
i
node *curptr;
curptr = fptr;
while (curptr 1= NULL)
i

cout <<" " << curptr—data;

curpir = curptr—next;

}

int main {)
i
clrser ();
intd, n;
stack st;

cout << "n Enter how many nodes will be added: ";

cin == n;

cout << "\n Enter data for the nodes with space: ";

for {inti=0; i < n; ++i)
{
cin == d;
st.newnode (d);
st.push ();

)

cout << "\n Data in the stack:":
st.show [)

getch ();

return 0;

}

Program output:

Enter how many nodes will be added:
Enter data for the nodes with space;

Data in the stack: 235665126

5

2356651268

Data Structures Fundamentals ATE|

Appendix-C Practical Issues

295

13.5 QUEUE

13.5.1 Creation of a linked based queue

This program is coding according to the principle of algorithm 6.3 in chapter
Six.

Program 9: Code of program for creating a linked based queue
#include=stdio.h>

#include<iostream.h>

#include<conio.h>

struct node
i
int data:
node* next;
b
class queue
{
node *iptr, *rptr, *newplr;
public:
queue ()
i
fiptr = NULL;
rptr = NULL;
i
void newnaode {int item);
void add ();
void delet {);
void show ();
B
void queue::newnode (int item)
i
newptr = new node;
newptr—data = item;
newptr—next = NULL;

}

void queuc:add ()
i
if (rptr ==NULL)
{

rptr = newplr;
fptr = newptr;
i
clse {
rptr—next = newptr;
pir = ﬂCW]:ItI';‘

i

void queuve::show ()

{

node *curptr;

curptr = fptr;

while (curptr != NULL)
i
cout<<" " << curptr—data;
curptr = curptr—+next;

|

int main ()
i
clrser {);
intd, n;
queue qt,
cout << "\n Enter how many nodes will be added: *;
cm == n;
cout << "\n Enter data for the nodes with space: ";

for (inti=0; i< n; ++1)

Data Structures Fundamentals 2906

i
cin == d; :
qt.newnode (d);
qtadd ();
}
cout << "\n Data in the queue:";
qt.show ();
getch ();
return 0

i
Program output:

Appendix-C Practical Issues 297

Enter how many nodes will be added: 5
Enter data for the nodes with space: 235665126

Data in the queue: 2356651246

13.6 TREE
13.6.1 Creation of a tree (Binary Search Tree)

This is an example of linked tree as BST in which some nodes will be added
to the tree and display the data using inorder method.

Program 10: Code of program for creating a linked based tree
#include<stdio h>

#include<iostream.h>

#include<conio.h>

struct node

i

node* [child;
int data;
node®* rchild;

b

class tree
{
node *parcntptr,*temptr, *newptr;
public:
node * treeptr;

tree{) /fconstructor,

{ treeptr=WULL,;

i

void newnode(int item),
void insert();

void inorder{node* curptr);

b

void tree;:newnode(int item)

i {{Separate function for creation
newpt=new node; /fof new node
newptr->Ichild=NULL;
newptr-~data=item;
newptr-=rchild=NULL;

i
void tree:zinsert() // Function for establishing linkage
{ {fbetween the existing linkedlist {if any)
ifitreeptr==NULL) //and new node
!
ireeptr=ncwplr;
}
else
{
temptr=trecpir.
while(temptr!=NULL)
{ parentptr=temptr;

if{temptr->data >= newptr-=data)

Data Structures Fundamentals

temptr=temptr->lchiid;
else

temptr=temptr-=rchild;

if{parentptr->data >= newptr->data)
parentptr-=lchild=newptr;
else

parentpir->rchild=newptr;

void tree;:inorder{node* cumptr)
{
iffcurptr!=NULL)
{ inorder{curptr-=1child);
cout==<" "<<curptr->data;
inorder{curptr->rohild);

—

main()
!
clrser();
int d,n;
tree ir;

cout<<"\n Enter how many nodes will be added: ";

cin=>n;

cout=<"n Enter data for the nodes with space: ";

for(int i=0;i<n;++)

i - o0
Appendix-C Practical lssucs 2

{ cin==d;
tr.newnode(d);
tr.insert();

i

cout=="\n The data in tree:";

tr.inorder(tr.ireeptr);

getch();

retumn 0;

}

13.7 GRAFH

This program is for the depth first traversal of & graph. In this program w.e
have a class graph (), which creates the graph and three functions. First is
read graph (), which reads the vertices and their adjacent nodes of a graph.
The second and the third functions are dfs (int) and dfs (). The first of these
two, traverses the graph for a single node and the second one traverses the
entire graph. The last function firaverse () displays the data for the depth
first raversal. In main (), we declare the necessary variables and call the
functions.

Program 11: Code for Depth First Scarch

dinclude<iostream.h>

int visit[100];

class graph

{

private:

int 1,

graph*next;

public:

graph* read_graphigraph*);

void dfs(int); //dfs for a single node
void dfs(); //dfs of the entire graph
void firaverse{graph®);

}*g[100];

i
fi

Data Structures Fundamentals

300

graph* graph::read_graph(graph*head)
{ .

int x;

graph*last;

head=last=NULL.

cout<<"Enter adjecent node ,-1 to stop:\n";
cin==x;

while(x!=-1)

{

graph*NEW;

NEW=new graph;

NEW->n=x;

NEW->next=NTJLL;

ifthead==NULL)
head=NEW:

else
last->next=NEW:
last=NEW:

cout<="Enter adjecent node ,-1 to stop:'n";
Cin=>x;

i

return head;

}

void graph::ftraverse(graph*h)
{

while(h!=NULL)

(

couts<h-mpa<tosn,

h=h->next;

i

cout=<"NULL"<<endi:

i

Appendix-C Practical Issues

301

void graph::dfs(int x)

{

cout<=<"node "<<x<<" is visited\n";
visit[x]=1; x
graph *p:

p=glx];

while{p!=NULL}

{

int x1=p->n;
if{visit[x1]==0)

{

cout<<"from node "<<x;
dfs(x1);

}

p=p-=nex;

|

void graph::dfs()

|

int i

cout<<"Enter the no of nodes :2";
cin==n;

for(i=1;i<=n;i++)

g[i]=NULL;

for(i=1;i<=m;it+)

l .
cout<<"Enter the adjacent nodes to node no. "<<i<<endl;

*.***t****“****t-'***'***** T T L L LEL LITLE
o . h1|
COu

gli]=read_graph(g[i]);

I
¥

Data Structures Fundamentals

{fdisplay the graph

cout<<"\n'\nThe entered graph is ::\n";
for(i=1;i<=n;i++) .
{

cout<<" < "agica >
firaverse(g[i]);

]

for(i=1;i<=n;it++)
visit[i]=0; /fmark all nodes as unvisited

cout<<"\nEnter the start vertex ::";
int start;

cin==start;

cout<<"inThe dfs for the above graph is :\n";
dfs(start);

|

int main()

{

graph obj;

obj.dfs();

retum 0;

i

Appendix-C Practical [ssues 303

Sample Input:

Enter the no of nodes 0 3

Enter the adjacent nodes to node no. 1
Enter adjecent node ,-1 1o stop:

2

Enter adjecent node ,-1 to stop:

5-1

Enter the adjacent nodes to node no. 2
Enter adjecent node ,-1 to stop:

1

Enter adjecent node -1 to stop:

3

Enter adjecent node ,-1 to stop:

4

Enter adjecent node ,-1 to stop:

5-1

Enter the adjacent nodes to node no. 3
Enter adjecent node ,-1 to stop:

2

Enter adjecent node -1 1o stop:

4-1

Enter the adjacent nodes to nede no. 4
Enter adjecent node ,-1 Lo stop:

2

Enter adjecent node ,-1 to stop:

3-1

Enter the adjacent nodes to node no. 5
Enter adjecent node ,-1 to stop:

1

Enter adjecent node -1 to stop:

2-1 .

The entered graph is &

< 1=>3;;2->5->NULL

2> 1->3.>5->4-> NULL
3=:2->4->NULL
423 ->NULL
§>1:1-»2->NULL

MoMAA

Enter the start vertex: 1

305

Data Structures Fundamentals 304 Appendix-C Practical Issues
Sample Output ' . { : .
The dfs for the above graph is & A[i} = random (1000);
node 1 is visited !

from nodel node 2 is visited
from node2 node 3 is visited

intf [bers in the armay:'\n™);
from noded node 4 15 visited printf | \ninRandom numbers in ¥

from node2 node 5 is visited for (i=0; i<mn; ++i)
i
printf (“%ed't”, A[i]);
13.8 SORTING }
Generate random numbers (integers) and sort them using Selection Sort '
Method for (i=0;i<mn; ++i)
This program is written based on the Algorithm 9.3 (see Chapter 9). Here, !
randomize () and random () functions are used to produce random numbers int small_index =1
upto 999. Neverthless, malloc () is used for allocation memory space in the for (intj = 0; j < n; ++j)
primry memory for Array A. For dynamic memory allocation pointer is used {
in this program. if (A[j] < A[small_index]) small_index = §
i
Program 12: temp = Alil;
include <stdio.h> A[i] = Alsmall_index];
include <conio.h> Alsmall_index] = temp;
include <stdlib.h> .)
void main () printf (*“‘nSorte listn");
{ ! for (i=0; i< n; ++i)
clrser (); } {
int n, *A, temp; f printf (“Yed\™, Ali])
_ i
printf (“Insert how many integers you need:\t"); getch();
scanf (*%ed”, &n); 4

A = (int *} malloc (n * sizeof (int));
randomize ();
for (inti=0;1<n; ++i)

Data Structures Fundamentals

Program Output:

Insert how many integers you need: 10

Random numbers in the array:
325 925 104 B8 142 32 BEY 113 235 653

Sorted list:
iz L 104 113 142 235 325 653 87 925

13.9 SEARCHING

Program 13: Code for searching using Binary Search algorithm
#include<stdio b=

#include<conio.h>

int x,no_of" elementelement[100];

int binary search()
i
int mid, first,last;
firsi=0;
lasl=no_uf._clcm ents-1;
while(first==last)
{
mid={first+last)/2;
if(x<element[mid])
last=mid-1;
else if{x=element[mid]}
first=mid+1;
clse return mid;

return -1,

Appendix-C Practical Issues 37

void main()

{
int i,found;
printf{"\nEnter the number of elements::");
scanf("%d",& no_o f element);
printf{"\nEnter the clements(sorted lis)::");
for(i=0;i<no_of elements;i)
scanfi"%ed", & element{i]);
printf{"\nEnter the element to be searched in the list:s");
seanf(" Yod" &),
found=binary_search{};
if{found==-1)
printf{"n%d does not exists in the list",x);
clse
printf{"n%d is element number ‘_’fi:d in the hist",x,found+1);

getch();

I Sample Input: Enter the number of clements:: 10
Enter the elements(sorted listy: -15 -10 512 20 110 114 115 250 290
Enter the clement to be searched in the list:: 12

Sample Output: 12 is element number 4 in the list

12.10 HASHING

Program 14: Chaining Method
#include<iostream.h=
#include<conio.h=

f#define NULL 0

struct node

{

int keyval;
node *next;
1

Forima-2§

Data Stru_cturcs Fundamentals

Jod

class linklist
{
node *table[107, *nptr, *tptr;
public:
linklist()
{
for(int i=0;i<10;1++)
table[i]=NULL,;
H
void newnode(int item);
void link():
void show();
1
void linklist::newnode(int item)
{
npt=new node();
nptr-=keyval=item;
npir->next=NULL;
i
void linklist::link()
{
int ind;
ind=nptr->keyval%10;
if{table[ind[=NULL)
table[ind]=nptr;
else :

{
tptr=table[ind];

while{tptr->next!=NUL

{

tptr=tpir->next;
;
tptr->next=npir,

}
void linklist::show()

{
node *cptr;

Appendix-C Practical Issues

309

for(int i=0;i<10;i++4)
{
cptr=table[i];
while(cptr!=NULL)
{
cout=<""<<cptr->keyval:
cptr=cpli->next;

H
cout<<"in\n";
1

I
void main()
{
clrser();
int n,d;
linklist list;

cout=<"\nHow many data:\t":
cin=>n;

cout<<"\nEnter data for nodes:\t";
for(int i=0;i<n;i++)

i
cin>>d;
list newnode(d);
list.link();
{
cout<<"\nData in the list:\t";
list.show();
getch();
i

Emple Input: How many data: 5

Sample Output: Data in the list:
1121
1222

23

Enter data for nodes; 11 12 21 22 73

10.

11,

]2-..
13.

14.

BIBLIOGRAPHY

Fundamentals of Data structure in C++, E. Horowitz, 8. Sahni, D.
Mehta, Galgotia Publication Pvt. Ltd, New Delhi.

The Art of Computer Programming, Volume I, Fundamental
Algorithms, D.E. Knuth, Addison-Wesley, Publishing Company,

2001.
The Art of Computer Programming, Volume 3, Sorting and
Searching, D.E. Knuth, Addison-Wesley, Publishing Company, 2001,
Fundamentals of Computer Algorithms, E. Horowitz, 5, Sahni, S.
Rajasekharan, Galgotia Publishing Pvt. Ltd, New Delhi.,
Data Structures, Edward M. Reingold, Wilfred J. Hansen, CBS
Publication & Distributions, 1983,
Theory and Problems of Data Structures, Seymour Lipschutz,
Schaum's Outline Series, McGraw-Hill Book Company, 1986.
Introduction of Algorithms, Thomas H. Cormen, Charles E. Leiserson
and Ronald L. Rivest, Prentice-Hall of India Private Limited, 1995,
Data Structures and Algorithms in Java, Robert Lafore, Techmedia,
2003.
Data Structures and Program Design in C, L. Krmse, Bruce P. Leung,
Clon's L Tondo, Prentice-Hall of India Private Limited, 1999,
Data Structurcs with Java, John R. Hubbard, Anita Huray, Prentice-
Hall of India Private Limited, 20035,
Data Structures using C and C++, Yedidyah Langsam, Moshe I.
Augenstein, Aaron M. Tenenbaum, Prentice-Hall of India Private
Limited, 2006.
Data Structure and Program Design, Robert L, Kruse, Prentice-Hall of
India Private Limited, 2005.
Data Structures and Algorithms in Java, Michel' T. Goodgrich,
Roberto Tamassia, John Wiley and Sons, Inc. 1998.
Data Structures and Algorithms using C#, Michael McMillan,
Cambridge University Press, 2007.

INDEX

A

Accessing (Amay elements)
Add element to stack

Add in queve element

Add node to BST

Add node to link list
Addition (array based queue)
Addition (Link based Queue)
Adjacency matrix

Alporithm .
‘Analysis of Merge short
Analysis of Quick sort
Application of stack
Anthmetic expression
Arrange linked list using C++
Array

Array based queue

Array based stack

Array in C++

Array in Java
Arraylist in C#
Armmay-Memory Representation
Arrays in C#

B
BFS algorithm
Binary Search Tree {(BST)

" Binary Searching

Binary Searching in C#
Binary Tree

Bit Armay in C#

Breadth First Search (BFS)
Bubble Sort

Bubble sort complexity
Bubble Sort in C#

C

C# (C-sharp)

Chaining Method

189

82
104
90
82

90
138

160
1635
73
73
285

B2
66

273
188
230
15

222

128
102

147
251
95

228
126
155

157
244

222
181

Data Structures Fu:admmmls

Checking validity
Circular Linked List
Circular Queue in Java
Class of internal sorting
Column-major
Complete binary tree
Complexity
Complexity of bubble
Complexity of insertion sort
Complexity of selection sort
Connected graph
Converting an infix
Create a circular linked list
Create a linked based quene
Create a linked list
Create a new node
Create a stack
Create circular linked list
Create doubly linked list
Create linked list
Creating a Doubly Linked List node
Cycle
D
Diata item
Data Structure
Delete a node from BST
Delete element for stack
Deletion a particular node
Delete node form link list
Delete node from Doubly link list.
Delete node from linked list using C++
Deleting a Node in Java
Deleting maximum from a max-heap
Deletion (array based queue)
Deletion (Link based Queue)
Deletion of a node
Depth First Search (DF5)
DFS algorithm
Difference between armay and linkedlist
Difference between array and record
Dirccted graph

73
58

194

150
15, 17

157
154
152
122
74
59
88

33

59
47
33
47

122

24
105
68
43
o1
53
282
213
110

91

43,53
128
130
a0

28
121

Index

313
Division Method 173
Double Hashing Method 178
Double linked list using C++ 289
Doubly Linked List 46
Emwbacks of array implementation B3
Efficiency of binary tree 217
Elementary data item |
Evaluating a postfix 77
Even number 11
External Sorting 150, 167
F
Folding Methods 174
Full binary tree o8
G
Garbage collection 58
Graph 121
Graph in C# 267
Graph in C++
Graph Traversal ?;g
H
Hash Collision 175
Hash Function 173
Hash table 173
Hash table creation algorithm 176, 180, 14
Hash table retrieval algorithm 177,179, 181
Hashing ITE, :
Hashing in C# 241
Hashing in C++ 307
Heap 107
Heap Creation 108
Heap sort 112
I
[mpontance of data structure 3
Infix arithmetic expression to its postfix form 74

Data Structures Fundamentals

314

In-order traversal

Insert a node

Insert Element

Insert node

Inserting a Node in Java

Inserting a node into a doubly linked list

Insertion Sort
Insertion Sort in C#
Internal Sorting

Internal sorting classes
1

Jagged Armay in C#

Java
K

Kruskal's algorithm

L

Linear array

Linear linked list
Linear Probing Method
Linear Searching

Link based Queue
Link based stack

Link list Class
Link list efficiency
Linked list

Linked List in C#

Linked list in C++
Linked list in Java
Locate a node

Location of an element
Linear search complexity
M

Matrix

Maximurm cost spanning tree
Merge Sort

Merge sort analysis
Merge Sort in C#

Merge two arrays
Mid-sequence method

100,211
39, 49
12
39, 41
210

49

152

248

150

150

226
188

134

10, 11
a2
175

146
88
68

200
203
31

232

176
1953
38
17
147

13
131
158

160
246

13
174

313

Mid-square Method

Minimum cost spanning tree
Multi Dimensional Armay in C#
™

Node class in Java

Node Creation

Mode Declaration

Mode Deletion

Node Insertion

Node Searching

0

Odd number ’

One Dimensional Array

One Dimensional Array in C#

Operations on data structure

B

Parent-Child Relationship

Path

Pointers

Pointers in C#

Pop

Pop Operation {Array based stack)

Pop operation (Link based stack)

Post fix expression

Post-order Traversal

Practical issues

Pre-order Traversal

Prim's algorithm

Principle

Priority Queue

Program

Push

Push Operation

Q

Quadratic Probing Method
Queue

Queve in CH
Queue in C++

174
131
225

2035
33
32
43
39
38

11

22

o6

121,
11,47,69,88,181

+ 231

63
68

T2

T
101
273
98, 212
131
55
115
2,5
65
a6, 71

177
81
238
294

317

Data Structures Fundamentals 36 Index
Stack 65

Queue in Java 194 Stack applications 73
Quick Sort : 162 Stack array based 26;1
Quick sort algorithm 164 Stack in C+ &
Quick sort analysis 165 stack-link based 523
Quick Sort in C# 245 Stacks in C#
R - Stacks in Java 191
Random probing Method 178 ,?}Drc element 8,15
Record 24 25,29 :
Rzzminn in Java 203 The Mode Class in Java 205
Recursion: Finding Factorials in Java 203 ' Time complexity 4
Rehashing Method 1180 Traversal (Binary Tree) o8
Retrieve value 8,15 Traversing the Tree in Java 211
Row-major 15,17 Tree 94
2 Tree implementation 05
Search element 10 Tree in C++ 296
Search largest element 9 TreeApp Class 206
Search linked list 38 Trees in C# 256
Herching Ly Two Dimensional Array _ 13
Searching a BST 103 Two Dimensional Array in C# 223
Searching for a Node in Java 209 Two dimensional array representation 13
Searching in C# 251 u
Searching in C++ 306 Undirected graph 121
Searching Linkedlist using C++ 278 W
Searching node value in BST 103 Weight.-:d graph 121
Selection Sort 151 Wrapping around 185
Setin C# 252 . .
Simple Linked List in Java 199 MOR linked list 35
Single source shortest paths problem 136
Sorted List in C# 249
Sorting 150
Sorting in C# 242
Sorting in C++ 304
Space complexity 4
Space complexity 4
Spanning tree 131
spanning sub-graph 131

	Table Of Contents

	Chapter 1 Background

	Chapter 2 Array

	Chapter 3 �Record
	Chapter 4
 Linked List
	Chapter 5
Stack
	Chapter 6
 Queue
	Chapter 7 Tree

	Chapter 8 Graph

	Chapter 9 Searching and So
rting
	Chapter 10 Hashing

	Appendix-A Data Structures in JAVA

	Appendix-B Data Structure in C SHARP (C#
)
	Appendix-C Practical Issues

	Index

